Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 89 | 1 | 237-240

Tytuł artykułu

On a translation property of positive definite functions

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
If G is a locally compact group with a compact invariant neighbourhood of the identity e, the following property (*) holds: For every continuous positive definite function h≥ 0 with compact support there is a constant $C_{h} > 0$ such that $∫ L_{x}h·g ≤ C_{h}∫ hg$ for every continuous positive definite g≥0, where $L_{x}$ is left translation by x. In [L], property (*) was stated, but the above inequality was proved for special h only. That "for one h" implies "for all h" seemed obvious, but turned out not to be obvious at all. We fill this gap by means of a new structure theorem for IN-groups. For p ∈ ℕ even, property (*) easily implies the following property (*)ₚ: For every relatively compact invariant neighbourhood U of e, there is a constant $C_{U} > 0$ such that $||χ_{xU}·g||ₚ ≤ C_{U}||χ_{U}·g||ₚ$ for every continuous positive definite function g. For all other p ∈ (1,∞), property (*)ₚ fails (see [L]). In the special case of the unit circle, the || ||ₚ-norm results are essentially due to N. Wiener, S. Wainger, and H. S. Shapiro. For compact abelian groups they are due to M. Rains, and for locally compact abelian groups to J. Fournier.

Słowa kluczowe

Twórcy

autor
  • Section for Computational Sensomotorics, Hertie Institute for Clinical Brain Research & Center for Integrative Neuroscience, University of Tübingen, D-72076 Tübingen, Germany
  • Institute of Applied Mathematics, University of Heidelberg, D-69120 Heidelberg, Germany

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-bc89-0-15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.