EN
We demonstrate the way in which composition of two famous combinatorial bijections, of Robinson-Schensted and Kerov-Kirillov-Reshetikhin, applied to the Heisenberg model of magnetic ring with spin 1/2, defines the geography of rigged strings (which label exact eigenfunctions of the Bethe Ansatz) on the classical configuration space (the set of all positions of the system of r reversed spins). We point out that each l-string originates, in the language of this bijection, from an island of l consecutive reversed spins. We also explain travel of l-strings along orbits of the translation group of the ring.