EN
A special case of G-equivariant degree is defined, where G = ℤ₂, and the action is determined by an involution $T:ℝ^p ⊕ ℝ^q → ℝ^p ⊕ ℝ^q$ given by T(u,v) = (u,-v). The presented construction is self-contained. It is also shown that two T-equivariant gradient maps $f,g:(ℝⁿ,S^{n-1}) → (ℝⁿ,ℝⁿ∖{0})$ are T-homotopic iff they are gradient T-homotopic. This is an equivariant generalization of the result due to Parusiński.