EN
Consider the problem of time-periodic strong solutions of the Stokes system modelling viscous incompressible fluid flow past a rotating obstacle in the whole space ℝ³. Introducing a rotating coordinate system attached to the body yields a system of partial differential equations of second order involving an angular derivative not subordinate to the Laplacian. In a recent paper [2] the author proved $L^q$-estimates of second order derivatives uniformly in the angular and translational velocities, ω and k, of the obstacle, whereas the transport terms fails to have $L^q$-estimates independent of ω. In this paper we clarify this unexpected behavior and prove weighted $L^q$-estimates of first order terms independent of ω.