EN
Suppose that A and B are unital Banach algebras with units $1_{A}$ and $1_{B}$, respectively, M is a unital Banach A,B-module, $𝓣 = \begin{bmatrix} A & M \\ 0 & B\end{bmatrix}$ is the triangular Banach algebra, X is a unital 𝓣-bimodule, $X_{AA} = 1_{A}X1_{A}$, $X_{BB} = 1_{B}X1_{B}$, $X_{AB} = 1_{A}X1_{B}$ and $X_{BA} = 1_{B}X1_{A}$. Applying two nice long exact sequences related to A, B, 𝓣, X, $X_{AA}$, $X_{BB}$, $X_{AB}$ and $X_{BA}$ we establish some results on (co)homology of triangular Banach algebras.