EN
We prove sharp a priori estimates for the distribution function of the dyadic maximal function ℳ ϕ, when ϕ belongs to the Lorentz space $L^{p,q}$, 1 < p < ∞, 1 ≤ q < ∞. The approach rests on a precise evaluation of the Bellman function corresponding to the problem. As an application, we establish refined weak-type estimates for the dyadic maximal operator: for p,q as above and r ∈ [1,p], we determine the best constant $C_{p,q,r}$ such that for any $ϕ ∈ L^{p,q}$,
$||ℳ ϕ||_{r,∞} ≤ C_{p,q,r}||ϕ||_{p,q}$.