EN
Let f be a transcendental entire function of finite lower order, and let $q_{ν}$ be rational functions. For 0 < γ < ∞ let
B(γ):= πγ/sinπγ if γ ≤ 0.5,
B(γ):= πγ if γ > 0.5.
We estimate the upper and lower logarithmic density of the set
${r: ∑_{1≤ν≤k} log⁺ max_{||z||=r} |f(z)−q_{ν}(z)|^{−1} < B(γ)T(r,f)}$.