EN
We prove some existence theorems for nonlinear integral equations of the Urysohn type $x(t) = φ(t) + λ∫_0^a f(t,s,x(s))ds$ and Volterra type $x(t) = φ(t) + ∫_0^tf(t,s,x(s))ds$, $t ∈ I_a = [0,a]$, where f and φ are functions with values in Banach spaces. Our fundamental tools are: measures of noncompactness and properties of the Henstock-Kurzweil integral.