EN
We study the class of smooth bounded weakly pseudoconvex domains D ⊂ ℂⁿ whose boundary points are of finite type (in the sense of J. Kohn) and whose Levi form has at most one degenerate eigenvalue at each boundary point, and prove effective estimates on the invariant distance of Carathéodory. This completes the author's investigations on invariant differential metrics of Carathéodory, Bergman, and Kobayashi in the corank one situation and on invariant distances on pseudoconvex finite type domains in dimension two.