EN
Asymptotic properties of the Discrete Fourier Transform spectrum of a complex monochromatic oscillation with frequency randomly distorted at the observation times t=0,1,..., n-1 by a series of independent and identically distributed fluctuations is investigated. It is proved that the second moments of the spectrum at the discrete Fourier frequencies converge uniformly to zero as n → ∞ for certain frequency fluctuation distributions. The observed effect occurs even for frequency fluctuations with magnitude arbitrarily small in comparison to the original oscillation frequency.