EN
For n ∈ ℕ, L > 0, and p ≥ 1 let $κ_p(n,L)$ be the largest possible value of k for which there is a polynomial P ≠ 0 of the form
$P(x) = ∑_{j=0}^n{a_jx^j}$, $|a_0| ≥ L(∑_{j=1}^n{|a_j|^p} }^{1/p}$, $a_j ∈ ℂ$,
such that $(x-1)^k$ divides P(x). For n ∈ ℕ and L > 0 let $κ_∞(n,L)$ be the largest possible value of k for which there is a polynomial P ≠ 0 of the form
$P(x) = ∑_{j=0}^n{a_jx^j}$, $|a_0| ≥ Lmax_{1 ≤ j ≤ n}{|a_j|}$, $a_j ∈ ℂ$,
such that $(x-1)^k$ divides P(x). We prove that there are absolute constants c₁ > 0 and c₂ > 0 such that
$c_1 √(n/L) -1 ≤ κ_{∞}(n,L) ≤ c_2 √(n/L)$
for every L ≥ 1. This complements an earlier result of the authors valid for every n ∈ ℕ and L ∈ (0,1]. Essentially sharp results on the size of κ₂(n,L) are also proved.