Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 82 | 2 | 231-260

Tytuł artykułu

Asymptotics of sums of subcoercive operators

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We examine the asymptotic, or large-time, behaviour of the semigroup kernel associated with a finite sum of homogeneous subcoercive operators acting on a connected Lie group of polynomial growth. If the group is nilpotent we prove that the kernel is bounded by a convolution of two Gaussians whose orders correspond to the highest and lowest orders of the homogeneous subcoercive components of the generator. Moreover we establish precise asymptotic estimates on the difference of the kernel and the kernel corresponding to the lowest order homogeneous component. We also prove boundedness of a range of Riesz transforms with the range again determined by the highest and lowest orders. Finally we analyze similar properties on general groups of polynomial growth and establish positive results for local direct products of compact and nilpotent groups.

Słowa kluczowe

Rocznik

Tom

82

Numer

2

Strony

231-260

Opis fizyczny

Daty

wydano
1999
otrzymano
1999-03-02
poprawiono
1999-07-05

Twórcy

autor
  • Centre for Mathematics and its Applications, School of Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia
  • Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
  • Centre for Mathematics and its Applications, School of Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia

Bibliografia

  • [ADM] Albrecht, D., Duong, X., and McIntosh, A., Operator theory and harmonic analysis, in: Instructional Workshop on Analysis and Geometry, Part III, Proc. Centre Math. Appl. 34, Australian National Univ., Canberra, 1996, 77-136.
  • [BaD] Barbatis, G., and Davies, E. B., Sharp bounds on heat kernels of higher order uniformly elliptic operators, J. Operator Theory 36 (1996), 179-198.
  • [Dav] Davies, E. B., One-Parameter Semigroups, London Math. Soc. Monographs 15, Academic Press, London, 1980.
  • [Dun] Dungey, N., Higher order operators and Gaussian bounds on Lie groups of polynomial growth, Research Report MRR 053-98, Australian National Univ., Canberra, 1998.
  • [DERS] Dungey, N., Elst, A. F. M. ter, Robinson, D. W., and Sikora, A., Asymptotics of subcoercive semigroups on nilpotent Lie groups, J. Operator Theory (1999), to appear.
  • [ElR1] Elst, A. F. M. ter, and Robinson, D. W., Subcoercivity and subelliptic operators on Lie groups I: Free nilpotent groups, Potential Anal. 3 (1994), 283-337.
  • [ElR2] Elst, A. F. M. ter, and Robinson, D. W., Weighted strongly elliptic operators on Lie groups, J. Funct. Anal. 125 (1994), 548-603.
  • [ElR3] Elst, A. F. M. ter, and Robinson, D. W., Subcoercivity and subelliptic operators on Lie groups II: The general case, Potential Anal. 4 (1995), 205-243.
  • [ElR4] Elst, A. F. M. ter, and Robinson, D. W., Weighted subcoercive operators on Lie groups, J. Funct. Anal. 157 (1998), 88-163.
  • [ElR5] Elst, A. F. M. ter, and Robinson, D. W., Local lower bounds on heat kernels, Positivity 2 (1998), 123-151.
  • [ERS1] Elst, A. F. M. ter, Robinson, D. W., and Sikora, A., Heat kernels and Riesz transforms on nilpotent Lie groups, Colloq. Math. 74 (1997), 191-218.
  • [ERS2] Elst, A. F. M. ter, Robinson, D. W., and Sikora, A., Riesz transforms and Lie groups of polynomial growth, J. Funct. Anal. 162 (1999), 14-51.
  • [NRS] Nagel, A., Ricci, F., and Stein, E. M., Harmonic analysis and fundamental solutions on nilpotent Lie groups, in: C. Sadosky (ed.), Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math. 122, Dekker, New York, 1990, 249-275.
  • [Rob] Robinson, D. W., Elliptic Operators and Lie Groups, Oxford Math. Monographs, Oxford Univ. Press, Oxford, 1991.
  • [VSC] Varopoulos, N. T., Saloff-Coste, L., and Coulhon, T., Analysis and Geometry on Groups, Cambridge Tracts in Math. 100, Cambridge Univ. Press, Cambridge, 1992.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-cmv82i2p231bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.