Let G be a finite p-group and let F be the field of p elements. It is shown that if G is elementary abelian-by-cyclic then the isomorphism type of G is determined by FG.
Institute of Mathematics, University of Białystok, Akademicka 2, 15-267 Białystok, Poland
Bibliografia
[1] C. Bagiński, The isomorphism question for modular group algebras of metacyclic p-groups, Proc. Amer. Math. Soc. 104 (1988), 39-42.
[2] C. Bagiński and A. Caranti, The modular group algebras of p-groups of maximal class, Canad. J. Math. 40 (1988), 1422-1435.
[3] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1983.
[4] R. Sandling, Units in the modular group algebra of a finite abelian p-group, J. Pure Appl. Algebra 33 (1984), 337-346.
[5] R. Sandling, The isomorphism problem for group rings: A survey, in: Lecture Notes in Math. 1142, Springer, Berlin, 1985, 256-288.
[6] R. Sandling, The modular group algebra of a central-elementary-by-abelian p-group, Arch. Math. (Basel) 52 (1989), 22-27.
[7] R. Sandling, The modular group algebra problem for small p-groups of maximal class, Canad. J. Math. 48 (1996), 1064-1078.
[8] S. Sehgal, Topics in Group Rings, Pure Appl. Math. 50, Marcel Dekker, New York, 1978.
[9] U. H. M. Webb, An elementary proof of Gaschütz' theorem, Arch. Math. (Basel) 35 (1980), 23-26.
[10] M. Wursthorn, Isomorphism of modular group algebras: An algorithm and its application to groups of order $2^6$, J. Symbolic Comput. 15 (1993), 211-227.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv82i1p125bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.