Department of Mathematics, University of Roorkee, Roorkee 247 667, Uttar Pradesh, India
Bibliografia
[1] F. H. Cheng, On the rate of convergence of the Szász-Mirakian operator for functions of bounded variation, J. Approx. Theory 40 (1984), 226-241.
[2] J. Gröf, A Szász Ottó-felé operator approximaciós tulajdonsgariól [On the approximation properties of the operators of O. Szász], Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 20 (1971), 35-44 (in Hungarian).
[3] T. Hermann, On the Szász-Mirakian operators, Acta Math. Acad. Sci. Hungar. 32 (1978), 163-173.
[4] H. S. Kasana, On approximation of unbounded functions by linear combinations of modified Szász-Mirakian operators, ibid. 61 (1993), 281-288.
[5] H. S. Kasana and P. N. Agrawal, On sharp estimates and linear combinations of modified Bernstein polynomials, Bull. Soc. Math. Belg. Sér. B 40 (1988), 61-71.
[6] H. S. Kasana, G. Prasad, P. N. Agrawal and A. Sahai, On modified Szász operators, in: Mathematical Analysis and its Applications (Kuwait, 1985), Pergamon Press, Oxford, 1988, 29-41.
[7] C. P. May, Saturation and inverse theorems for combinations of a class of exponential operators, Canad. J. Math. 28 (1976), 1224-1250.
[8] S. P. Singh, On the degree of approximation by Szász operators, Bull. Austral. Math. Soc. 24 (1981), 221-225.
[9] X. H. Sun, On the simultaneous approximation of functions and their derivatives by the Szász-Mirakian operators, J. Approx. Theory 55 (1988), 279-288.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv80i1p123bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.