Institut für Mathematik, Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
Bibliografia
[1] H. Alzer, On rational approximations to e, J. Number Theory 68 (1998), 57-62.
[2] C. Elsner, On the approximation of irrational numbers with rationals restricted by congruence relations, Fibonacci Quart. 34 (1996), 18-29.
[3] C. Elsner, A metric result concerning the approximation of real numbers by continued fractions, ibid. 36 (1998), 290-294.
[4] C. Elsner, On the approximation of irrationals by rationals, Math. Nachr. 189 (1998), 243-256.
[5] L. Euler, De fractionibus continuis, Commentarii Academiae Scientiarum Imperialis Petropolitanae, 1737.
[6] S. Hartman, Sur une condition supplémentaire dans les approximations diophantiques, Colloq. Math. 2 (1949), 48-51.
[7] M. Hata, A lower bound for rational approximations to π, J. Number Theory 43 (1993), 51-67.
[8] M. Hata, Improvement in the irrationality measures of π and π^2 , Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), 283-286.
[9] C. Hermite, Sur la fonction exponentielle, C. R. Acad. Sci. Paris 77 (1873), 18-24, 74-79, 226-233, 285-293.
[10] C. L. F. von Lindemann, Über die Zahl π, Math. Ann. 20 (1882), 213-225.
[11] K. Mahler, On the approximation of π, Proc. Akad. Wetensch. Ser. A 56 (1953), 30-42.
[12] K. R. Matthews and R. F. C. Walters, Some properties of the continued fraction expansion of $(m/n)e^1/q $, Proc. Cambridge Philos. Soc. 67 (1970), 67-74.
[13] O. Perron, Die Lehre von den Kettenbrüchen, Chelsea, New York, 1950.
[14] T. Schneider, Einführung in die transzendenten Zahlen, Springer, Berlin, 1957.
[15] A. B. Shidlovskiĭ, Transcendental Numbers, de Gruyter, Berlin, 1989.
[16] S. Uchiyama, On rational approximations to irrational numbers, Tsukuba J. Math. 4 (1980), 1-7.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv79z1p133bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.