Department of Mathematics-IME, University of São Paulo, Caixa Postal 66.281-AG. Cidade de São Paulo, 05315-970 São Paulo, Brasil
Bibliografia
[1] M. Arkowitz and M. Golasiński, Co-H-structures on Moore spaces of type (G,2), Canad. J. Math. 46 (1994), 673-686.
[2] M. Arkowitz and G. Lupton, Rational co-H-spaces, Comment. Math. Helv. 66 (1991), 79-109.
[3] M. Arkowitz and G. Lupton, Equivalence classes of homotopy-associative comultiplications of finite complexes, J. Pure Appl. Algebra 102 (1995), 109-136.
[4] M. G. Barratt, Track groups I, Proc. London Math. Soc. 5 (1955), 71-106; II, ibid., 285-329.
[5] B H. J. Baues, Quadratic functors and metastable homotopy, J. Pure Appl. Algebra 91 (1994), 49-107.
[6] M. Golasiński and D. L. Gonçalves, On co-Moore spaces, Math. Scand., to appear.
[7] H P. J. Hilton, Homotopy Theory and Duality, Gordon and Breach, New York, 1965.
[8] R. E. Mosher and M. C. Tangora, Cohomology Operations and Applications in Homotopy Theory, Harper and Row, New York, 1968.
[9] C. M. Naylor, On the number of comultiplications of a suspension, Illinois J. Math. 12 (1968), 620-622.
[10] G. W. Whitehead, Elements of Homotopy Theory, Springer, Berlin, 1978.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv76z2p229bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.