Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
[1] B. Grammaticos, J. Moulin-Ollagnier, A. Ramani, J.-M. Strelcyn and S. Wojciechowski, Integrals of quadratic ordinary differential equations in $ℝ^3$: The Lotka-Volterra system, Phys. A 163 (1990), 683-722.
[2] M. W. Hirsch, Systems of differential equations which are competitive or cooperative. I. Limit sets, SIAM J. Math. Anal. 13 (1982), 167-179.
[3] M. W. Hirsch, Systems of differential equations that are competitive or cooperative. II. Convergence almost everywhere, ibid. 16 (1985), 423-439.
[4] M. W. Hirsch, Systems of differential equations which are competitive or cooperative. III. Competing species, Nonlinearity 1 (1988), 51-71.
[5] M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer, Berlin, 1977.
[6] J. Mierczyński, A class of strongly cooperative systems without compactness, Colloq. Math. 62 (1991), 43-47.
[7] J. Palis and F. Takens, Topological equivalence of normally hyperbolic dynamical systems, Topology 16 (1977), 335-345.
[8] H. L. Smith, Periodic orbits of competitive and cooperative systems, J. Differential Equations 65 (1986), 361-373.
[9] H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monographs 41, Amer. Math. Soc., Providence, R.I., 1995.
[10] I. Tereščák, Dynamics of $C^1$ smooth strongly monotone discrete-time dynamical systems, preprint.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv76z2p181bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.