This work concerns bounds for Chern classes of holomorphic semistable and stable vector bundles on $ℙ^n$. Non-negative polynomials in Chern classes are constructed for 4-vector bundles on $ℙ^4$ and a generalization of the presented method to r-bundles on $ℙ^n$ is given. At the end of this paper the construction of bundles from complete intersection is introduced to see how rough the estimates we obtain are.
Institute of Theoretical and Applied Computer Science, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
Bibliografia
[1] G. Elencwajg and O. Forster, Bounding cohomology groups of vector bundles on $ℙ_n$, Math. Ann. 246 (1980), 251-270.
[2] H. J. Hoppe, Generischer Spaltungstyp und zweite Chernklasse stabiler Vektorraumbündel vom Rang 4 auf $ℙ_4$, Math. Z. 187 (1984), 345-360.
[3] K. Jaczewski, M. Szurek and J. Wiśniewski, Geometry of the Tango bundle, in: Proc. Conf. Algebraic Geometry, Berlin 1985, Teubner-Texte Math. 92, Teubner, 1986, 177-185.
[4] M. Maruyama, The theorem of Grauert-Mülich-Spindler, Math. Ann. 255 (1981), 317-333.
[5] C. Okonek, M. Schneider and H. Spindler, Vector Bundles on Complex Projective Spaces, Progr. Math. 3, Birkhäuser, 1980.
[6] M. Schneider, Chernklassen semi-stabiler Vektorraumbündel vom Rang 3 auf dem komplex-projektiven Raum, J. Reine Angew. Math. 315 (1980), 211-220.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv65i2p277bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.