Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Bibliografia
[1] H. Beckner, S. Janson and J. Jerison, Convolution inequalities on the circle, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund (W. Beckner et al., eds.), Wadsworth, Belmont 1983, 32-43.
[2] A. Bonami, Étude des coefficients de Fourier des fonctions de $L^p(G)$, Ann. Inst. Fourier (Grenoble) 20 (2) (1970), 335-402.
[3] M. Christ, A convolution inequality concerning Cantor-Lebesgue measures, Rev. Mat. Iberoamericana 1 (1985), 75-83.
[4] R. E. Edwards, Fourier Series, Vol. 2, Springer, New York 1982.
[5] C. Graham, K. Hare and D. Ritter, The size of $L^p$-improving measures, J. Funct. Anal. 84 (1989), 472-495.
[6] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York 1979.
[7] K. Hare, A characterization of $L^p$-improving measures, Proc. Amer. Math. Soc. 102 (1988), 295-299.
[8] K. Hare, Properties and examples of $(L^p,L^q)$ multipliers, Indiana Univ. Math. J. 38 (1989), 211-227.
[9] R. Larson, An Introduction to the Theory of Multipliers, Grundlehren Math. Wiss. 175, Springer, New York, 1971.
[10] J. López and K. Ross, Sidon Sets, Lecture Notes in Pure Appl. Math. 13, Marcel Dekker, New York 1975.
[11] D. Oberlin, A convolution property of the Cantor-Lebesgue measure, Colloq. Math. 67 (1982), 113-117.
[12] J. Price, Some strict inclusions between spaces of $L^p$-multipliers, Trans. Amer. Math. Soc. 152 (1970), 321-330.
[13] D. Ritter, Most Riesz product mesures are $L^p$-improving, Proc. Amer. Math. Soc. 97 (1986), 291-295.
[14] D. Ritter, Some singular measures on the circle which improve $L^p$ spaces, Colloq. Math. 52 (1987), 133-144.
[15] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227.
[16] E. M. Stein, Harmonic analysis on $R^n$, in: Studies in Harmonic Analysis, MAA Stud. Math. 13, J. M. Ash (ed.), 1976, 97-135.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-cmv63i2p249bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.