Department of Mathematics, Faculty of Education and Human Sciences, Yokohama National University, Yokohama 240-8501, Japan
Bibliografia
[1] V. I. Arnol'd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of Differentiable Maps I, Monogr. Math. 82, Birkhäuser, Boston, 1985.
[2] K. Bekka, C-régularité et trivialité topologique, in: Singularity Theory and its Applications (Warwick, 1989), Part I, D. Mond and J. Montaldi (eds.), Lecture Notes in Math. 1462, Springer, Berlin, 1991, 42-62.
[3] M. Fukuda and T. Fukuda, Algebras Q(f) determine the topological types of generic map germs, Invent. Math. 51 (1979), 231-237.
[4] T. Gaffney, A note on the order of determination of a finitely determined germ, Invent. Math. 52 (1979), 127-130.
[5] T. Gaffney, The structure of TA(f), classification and an application to differential geometry, Proc. Sympos. Pure Math. 40 (1983), 409-427.
[6] T. Gaffney and A. A. du Plessis, More on the determinacy of smooth map-germs, Invent. Math. 66 (1982), 137-163.
[7] C. G. Gibson, K. Wirthmüller, A. A. du Plessis, E. J. N. Looijenga, Topological Stability of Smooth Mappings, Lecture Notes in Math. 552, Springer, Berlin, 1976.
[8] J. Martinet, Déploiements versals des applications différentiables et classification des applications stables, in: Singularités d'applications différentiables (Plans-sur-Bex, 1975), O. Burlet, F. Ronga (eds.), Lecture Notes in Math. 535, Springer, Berlin, 1976, 1-44.
[9] J. Mather, Stability of $C^∞$ mappings, III. Finitely determined map-germs, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 127-156.
[10] J. Mather, Stability of $C^∞$ mappings, IV. Classification of stable map-germs by R-algebras, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 223-248.
[11] J. Mather, How to stratify mappings and jet spaces, in: Singularités d'applications différentiables (Plans-sur-Bex, 1975), O. Burlet, F. Ronga (eds.), Lecture Notes in Math. 535, Springer, Berlin, 1976, 128-176.
[12] D. Mond, On the classification of germs of maps from $R^2$ to $R^3$, Proc. London Math. Soc. (3) 50 (1985), 333-369.
[13] T. Nishimura, A constructive method to get right-left equivalence for smooth map germs and its application to divergent diagrams, in: Workshop on Real and Complex Singularities (São Carlos, 1992), M. A. S. Ruas (ed.), Mat. Contemp. 5, Sociedade Brasileira de Matemática, Rio de Janeiro, 1993, 137-160.
[14] T. Nishimura, Isomorphism of smooth map germs with isomorphic local algebras, in: Real Analytic and Algebraic Singularities (Nagoya, 1996), T. Fukuda, T. Fukui, S. Izumiya and S. Koike (eds.), Pitman Res. Notes Math. Ser. 381, Longman, Harlow, 1998, 94-106.
[15] T. Nishimura, Criteria for right-left equivalence of smooth map-germs, preprint, Yokohama National University, 1998.
[16] T. Nishimura, Topological equivalence of K-equivalent map germs, J. London Math. Soc. (2), to appear.
[17] T. Nishimura, $C^r$ K-versality of the graph deformation of a $C^r$ stable map-germ, Math. Proc. Cambridge Philos. Soc., to appear.
[18] T. Nishimura, Topological equivalence of K-equivalent map germs, II, in preparation.
[19] A. A. du Plessis, On the determinacy of smooth map-germs, Invent. Math. 58 (1980), 107-160.
[20] A. A. du Plessis and C. T. C. Wall, The Geometry of Topological Stability, London Math. Soc. Monogr. (N.S.) 9, Oxford University Press, New York, 1995.
[21] C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), 481-539.