Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 46 | 1 | 159-168

Tytuł artykułu

Interrelation of algebraic, semantical and logical properties for superintuitionistic and modal logics

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We consider the families 𝓛 of propositional superintuitionistic logics (s.i.l.) and NE(K) of normal modal logics (n.m.l.). It is well known that there is a duality between 𝓛 and the lattice of varieties of pseudo-boolean algebras (or Heyting algebras), and also NE(K) is dually isomorphic to the lattice of varieties of modal algebras. Many important properties of logics, for instance, Craig's interpolation property (CIP), the disjunction property (DP), the Beth property (BP), Hallden-completeness (HP) etc. have suitable properties of varieties as their images, and many natural algebraic properties are in accordance with natural properties of logics. For example, a s.i.l. L has CIP iff its associated variety V(L) has the amalgamation property (AP); L is Hallden-complete iff V(L) is generated by a subdirectly irreducible Heyting algebra. For any n.m.l. L, the amalgamation property of V(L) is equivalent to a weaker version of the interpolation property for L, and the super-amalgamation property is equivalent to CIP; L is Hallden-complete iff V(L) satisfies a strong version of the joint embedding property. Well-known relational Kripke semantics for the intuitionistic and modal logics seems to be a more natural interpretation than the algebraic one. The categories of Kripke frames may, in a sense, be considered as subcategories of varieties of Heyting or modal algebras. We discuss the question to what extent one may reduce problems on properties of logics to consideration of their semantic models.

Słowa kluczowe

Rocznik

Tom

46

Numer

1

Strony

159-168

Opis fizyczny

Daty

wydano
1999

Twórcy

  • Institute of Mathematics, Siberian Division of Russian Academy of Sciences, 630090, Novosibirsk, Russia

Bibliografia

  • [1] A. Chagrov and M. Zakharyashchev, Undecidability of the disjunction property of propositional logics and other related problems, J. Symbolic Logic 58, 3 (1993), 967-1002.
  • [2] M. Dummett and E. Lemmon, Modal logics between S4 and S5, Zeitschr. math. Log. und Grundl. Math. 5 (1959), 250-264.
  • [3] S. Hallden, On the semantic non-completeness of certain Lewis calculi, J. Symbolic Logic 16 (1951), 127-129.
  • [4] L. Henkin, J. D. Monk and A. Tarski, Cylindric Algebras, Part II, Amsterdam: North-Holland, 1985.
  • [5] Y. Komori, Logics without Craig's interpolation property, Proc. of the Japan Academy, 54 (1978), 46-48.
  • [6] G. Kreisel, Explicit definability in intuitionistic logic, J. Symbolic Logic, 25 (1960), 389-390.
  • [7] L. L. Maksimova, Craig's Theorem in Superintuitionistic Logics and Amalgamable Varieties of Pseudo-Boolean Algebras, Algebra i Logika, 16, no. 6 (1977), 643-681.
  • [8] L. L. Maksimova, Interpolation theorems in modal logics and amalgamated varieties of topoboolean algebras, Algebra i Logika, 18, No. 5, 556-586 (1979).
  • [9] L. Maksimova, Interpolation properties of superintuitionistic logics, Studia Logica 38 (1979), 419-428.
  • [10] L. Maksimova, Failure of interpolation property in modal companions of Dummett's logic, Algebra i Logika, 21, no. 6 (1982), 690-694.
  • [11] L. Maksimova, On maximal intermediate logics with the disjunction property, Studia Logica, 45, no. 1 (1986), 69-75.
  • [12] L. Maksimova, Amalgamation and Interpolation in Normal Modal Logics, Studia Logica, 50, 3/4 (1991), 457-471.
  • [13] L. L. Maksimova, Modal logics and varieties of modal algebras: the Beth properties, interpolation and amalgamation, Algebra i Logika 31, 2 (1992), 145-166.
  • [14] L. Maksimova, Definability and Interpolation in Classical Modal Logics, Contemporary Mathematics, 131, 1992 (part 3), 583-599.
  • [15] L. L. Maksimova, An Analog of Beth's Theorem in Normal Extensions of the Modal Logic K4, Sibirskii Matematicheskii Zhurnal, 33, no. 6 (1992), 118-130.
  • [16] L. Maksimova, On variable separation in Modal and Superintuitionistic Logics, Studia Logica, 55 (1995), 99-112.
  • [17] L. L. Maksimova and V. V. Rybakov, On the lattice of normal modal logics, Algebra i Logika 13, 2 (1974), 188-216.
  • [18] H. Rasiowa and R. Sikorski, The Mathematics of Metamathematics, PWN, Warsaw, 1963.
  • [19] W. Rautenberg, Klassische und nicht-klassische Aussagenlogik, Wiesbaden, Vieweg, Braunschweig, 1979.
  • [20] K. Segerberg, An Essay in Classical Modal Logics, Uppsala University, Uppsala, 1971.
  • [21] N.-Y. Suzuki, Intermediate logics characterized by a class of algebraic frames with infinite individual domain, Bull. Section of Logic 18, 2 (1989), 63-71.
  • [22] S. K. Thomason, Categories of frames for modal logic, J. Symbolic Logic, 40, no. 3 (1975), 439-442.
  • [23] J. F. A. K. van Benthem and I. L. Humberstone, Hallden-completeness by gluing of Kripke-frames, Notre Dame J. of Formal Logic, 24 (1983), 426-430.
  • [24] A. Wroński, Remarks on Hallden-completeness of modal and intermediate logics, Bull. Section of Logic 5, 4 (1976), 126-129.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-bcpv46i1p159bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.