The paper is an overview of our results concerning the existence of various structures, especially complex and quaternionic, in 8-dimensional vector bundles over closed connected smooth 8-manifolds.
Academy of Sciences of the Czech Republic, Institute of Mathematics, Žižkova 22, 616 62 Brno, Czech Republic
Bibliografia
[AD] M. Atiyah and J. Dupont, Vector fields with finite singularities, Acta Math. 128 (1972), 1-40.
[BH] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-538.
[Br] C. Brada, Eléments de la géométrie des octaves de Cayley, Thesis, Publications du Département de Mathématiques de l'Université de Lyon I, 2/d-1986.
[CV1] M. Čadek and J. Vanžura, On the classification of oriented vector bundles over 9-complexes, Proceedings of the Winter School Geometry and Physics 1993, Suppl. Rend. Circ. Math. Palermo, Serie II 37 (1994).
[CV2] M. Čadek and J. Vanžura, On 2-distributions in 8-dimensional vector bundles over 8-complexes, Colloq. Math. 70 (1996), 25-40.
[CV3] M. Čadek and J. Vanžura, On Sp(2) and Sp(2)·Sp(1)-structures in 8-dimensional vector bundles, to appear in Publ. Math.
[CV4] M. Čadek and J. Vanžura, Almost quaternionic structures on eight-manifolds, to appear in Osaka J. Math. 35 (1) (1998).
[CV5] M. Čadek and J. Vanžura, On complex structures in 8-dimensional vector bundles, to appear in Manuscripta Math.
[CV6] M. Čadek and J. Vanžura, On 4-fields and 4-distributions in 8-dimensional vector bundles over 8-complexes, Colloq. Math. 76 (1998), 213-228.
[CS] M. C. Crabb and B. Steer, Vector-bundle monomorphisms with finite singularities, Proc. London Math. Soc. (3) 30 (1975), 1-39.
[Du] J. L. Dupont, K-theory obstructions to the existence of vector fields, Acta Math. 113 (1974), 67-80.
[E] C. Ehresmann, Sur les variétés presque complexes, Proceedings of the International Congress of Mathematicians II(1950), 412-419.
[Fr] H. Freudenthal, Octaven Ausnahmegruppen und Oktavengeometrie, Utrecht, 1951.
[GG] A. Gray and P. Green, Sphere transitive structures and the triality automorphism, Pacific J. Math. 34 (1970), 83-96.
[He] T. Heaps, Almost complex structures on eight- and ten-dimensional manifolds, Topology 9 (1970), 111-119.
[Hi] F. Hirzebruch, Komplexe Mannigfaltigkeiten, Proc. International Congress of Mathematicians 1958, Cambridge University Press, 1960, 119-136.
[HH] F. Hirzebruch and H. Hopf, Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958), 156-172.
[K1] U. Koschorke, Vector fields and other vector bundle morphisms - a singularity approach, Lecture Notes in Mathematics 847, Springer-Verlag, 1981.
[K2] U. Koschorke, Nonstable and stable monomorphisms of vector bundles, preprint (1995).
[Po] M. M. Postnikov, Lie Groups and Lie Algebras, Lectures in Geometry, Semester V, translation from Russian, Mir, Moscow, 1986.
[Q] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann. 194 (1971), 197-212.
[T1] E. Thomas, Complex structures on real vector bundles, Am. J. Math. 89 (1966), 887-908.
[T2] E. Thomas, Vector fields on manifolds, Bulletin Amer. Math. Soc. 75 (1967), 643-683.
[T3] E. Thomas, On the cohomology groups of the classifying space for the stable spinor group, Bol. Soc. Math. Mex. (2) 7 (1962), 57-69.