[1] L. Accardi, Topics in Quantum Probability, Phys. Rep. 77 (1981), 169-192.
[2] L. Accardi and C. Cecchini, Conditional Expectations in von Neumann Algebras and a Theorem of Takesaki, J. Func. Anal. 45 (1982), 245-273.
[3] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Springer Verlag, New York-Heidelberg-Berlin, vol. I (1979), vol. II (1981).
[4] A. Connes, Sur le Théorème de Radon-Nikodym pour les Poids Normaux Fidèles Semi-finis, Bull. Sc. math., $2^e$ série, 97 (1973), 253-258.
[5] H. Epstein, Remarks on Two Theorems of E. Lieb, Commun. Math. Phys. 31 (1973), 317-325.
[6] E. H. Lieb, Convex Trace Functions and the Wigner-Yanase-Dyson Conjecture, Adv. in Math. 11 (1973), 267-288.
[7] A. W. Majewski and B. Zegarliński, On Quantum Stochastic Dynamics and Noncommutative $L_p$ Spaces, Lett. Math. Phys. 36 (1995), 337-349.
[8] A.W. Majewski and B. Zegarliński, Quantum Stochastic Dynamics I: Spin Systems on a Lattice, Math. Phys. Electronic J. 1 (1995), Paper 2.
[9] A.W. Majewski and B. Zegarliński, Quantum Stochastic Dynamics II, Rev. Math. Phys. 8 (1996), 689-713.
[10] A.W. Majewski and B. Zegarliński, On quantum stochastic dynamics, Markov Proc. and Rel. Fields 2 (1996), 87-116.
[11] A.W. Majewski, R. Olkiewicz and B. Zegarliński, Dissipative dynamics for quantum spin systems on a lattice, in: Frontiers in Quantum Physics, Eds. S. C. Lim, R. Abd-Shukor, K. H. Kwek, Springer Verlag, 1998, 112-126.
[12] A.W. Majewski, R. Olkiewicz and B. Zegarliński, Construction and ergodicity of dissipative dynamics for quantum spin systems on a lattice, J. Phys. A: Math. Gen. 31 (1998), 2045-2056.
[13] T. Matsui, Markov semigroups which describe the time evolution of some higher spin quantum models, J. Func. Anal. 116 (1993), 179-198.
[14] R. Olkiewicz and B. Zegarliński, Hypercontractive Markov Semigroups in Noncommutative $L_p$ Spaces, Preprint 1997.
[15] G. Stragier, J. Quaegebeur and A. Verbeure, Quantum detailed balance, Ann. Inst. Henri Poincaré 41 (1984), 25-36.