By applying the Hamiltonian reduction technique we derive a matrix first order differential equation that yields the classical r-matrices of the elliptic (Euler-) Calogero-Moser systems as well as their degenerations.
Steklov Mathematical Institute, Vavilova 42, GSP-1, 117966, Moscow, Russia
Bibliografia
[1] E. K. Sklyanin, Alg. Anal., 6(2) (1994) 227.
[2] H. W. Braden, T. Suzuki, Lett. Math. Phys. 30 (1994) 147.
[3] E. Billey, J. Avan, O. Babelon, Phys. Lett. A 188 (1994) 263.
[4] G. E. Arutyunov, P. B. Medvedev, Geometric construction of the classical r-matrix for the elliptic and trigonometric Calogero-Moser systems, preprint, hep-th/9511070.
[5] V. I. Arnol'd, Mathematical methods of classical mechanics, Graduate Texts in Math., 60, Spinger-Verlag, Berlin, New-York, 1989.
[6] M. A. Olshanetsky, A. M. Perelomov, Invent. Math. 37 (1976) 93; Phys. Reps. 71 (1981) 313; Phys. Reps. 94 (1983) 6; D. Kazhdan, B. Kostant, S. Sternberg, Comm. Pure Appl. Math. 31 (1978) 481.
[7] J. Avan, O. Babelon, M. Talon, Alg. Anal., 6(2) (1994) 67.
[8] E. Markman, Comp. Math. 93 (1994) 255.
[9] A. Gorsky, N. Nekrasov, Elliptic Calogero-Moser system from two-dimensional current algebra, preprint, hep-th/9401021.
[10] O. Babelon, C. M. Viallet, Phys. Lett. B 237 (1989) 411.
[11] J. Avan, M. Talon, Phys. Lett. B 303 (1993) 33.
[12] I. Krichever, Funk. Anal. Appl., 14 (1980) 45.
[13] N. I. Akhiezer, Elements of theory of elliptic functions, in Russian.
[14] A. Gorsky, N. Nekrasov, Nucl. Phys. B414 (1994), 213; B436 (1995), 582; A. Gorsky, Integrable many body systems in the field theories, preprint UUITP-16/94, (1994).
[15] J. Avan and G. Rollet, The classical r-matrix for the relativistic Ruijsenaars-Schneider system, preprint BROWN-HET-1014 (1995).
[16] S. N. Ruijsenaars, Comm. Math. Phys. 110 (1987) 191.