[1] A. Abbondandolo, A rotation number for invariant measures and Morse theory, (to appear).
[2] D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature, Proc. Inst. Steklov 90 (1967), 1-235.
[3] V. I. Arnol'd, Characteristic class entering in quantization conditions,Functional Anal. Appl. 1 (1967), 1-14.
[4] V. Benci, A new approach to Morse-Conley Theory and some applications, Ann. Mat. Pura Appl. (4) 158 (1991), 231-305.
[5] V. Benci and D. Fortunato, Periodic solutions of asymptotically linear dinamical systems, Nonlinear Diff. Eq. and Appl. (to appear).
[6] R. Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math. 9(1956), 176-206.
[7] K. C. Chang, Infinite dimensional Morse theory and multiple solutions problems, Boston-Basel: Birkhauser 1993.
[8] C. Conley and E. Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), 207-253.
[9] I. Ekeland, Convexity methods in Hamiltonian mechanics, Berlin Heidelberg New York: Springer-Verlag 1990.
[10] I. Ekeland, An index theory for periodic solutions of convex Hamiltonian systems, Proceedings for Symposia in Pure Math. 45, 395-423.
[11] R. Mañé, Ergodic Theory and Differentiable Dynamics, Berlin Heidelberg New York: Springer-Verlag 1987.
[12] J. L. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, New York: Springer-Verlag 1989.
[13] M. Vigué-Poirrier and D. Sullivan, The homology theory for the closed geodesic problem, J. Differential Geom. 11(1976), 633-644.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv35i1p29bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.