Université des Sciences et Technologies de Lille, URA CNRS 751, U.F.R. de Mathématiques, 59655 Villeneuve d'Ascq Cedex, France
Bibliografia
[1] F. Berteloot, Hölder continuity of proper holomorphic mappings, Studia Math. 100 (1991), 229-235.
[2] F. Berteloot, A remark on local continuous extension of holomorphic mappings, in: Contemp. Math. 137 (1992), 79-83.
[3] F. Berteloot et G. Cœuré, Domaines de $C^2$, pseudoconvexes et de type fini, ayant un groupe non compact d'automorphismes, Ann. Inst. Fourier 41 (1) (1991), 77-86.
[4] K. Diederich and J. E. Fornaess, Proper holomorphic maps onto pseudoconvex domains with real analytic boundaries, Ann. of Math. 110 (1979), 575-592.
[5] F. Forstneric and J. P. Rosay, Localization of the Kobayashi metric and the boundary continuity of proper holomorphic mappings, Math. Ann. 279 (1987), 239-252.
[6] J. E. Fornaess and N. Sibony, Construction of p.s.h. functions on weakly pseudoconvex domains, Duke Math. J. 58 (1989), 633-655.
[7] G. M. Henkin, An analytic polyhedron is not biholomorphically equivalent to a strictly pseudoconvex domain, Soviet Math. Dokl. 14 (1973), 858-862.
[8] S. Pinchuk, Holomorphic aps in $ℂ^n$ and the Problem of Holomorphic Equivalence, Encyclopaedia of Math. Sci. 19, Springer, 1989.
[9] S. Pinchuk, On proper holomorphic mappings of strictly pseudoconvex domains, Siberian Math. J. 15 (1974), 909-917.
[10] R. M. Range, On the topological extension to the boundary of biholomorphic maps in $ℂ^n$, Trans. Amer. Math. Soc. 216 (1976), 203-216.
[11] N. Sibony, A class of hyperbolic manifolds, in: Ann. of Math. Stud. 100, 1981, 357-372.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-bcpv31z1p91bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.