An iterative procedure containing two parameters for solving linear algebraic systems originating from the domain decomposition technique is proposed. The optimization of the parameters is investigated. A numerical example is given as an illustration.
Matematický ústav AV ČR, Žitná 25, 11567 Praha 1, Czech Republic
Bibliografia
[1] P. Bjørstad and O. Widlund, Iterative methods for the solution of elliptic problems on regions partitioned into substructures, SIAM J. Numer. Anal. 23 (1986), 1097-1120.
[2] J. Bramble, J. Pasciak and A. Schatz, An iterative method for elliptic problems on regions partitioned into substructures, Math. Comp. 46 (1986), 361-369.
[3] T. Chan, R. Glowinski, G. A. Meurant, J. Périaux and O. Widlund (eds.), Domain Decomposition Methods, SIAM, Philadelphia 1989.
[4] R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux (eds.), First International Symposium on Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia 1988.
[5] L. D. Marini and A. Quarteroni, A relaxation procedure for domain decomposition methods using finite elements, Numer. Math. 55 (1989), 575-598.
[6] M. Práger, An iterative method of alternating type for systems with special block matrices, Appl. Math. 36 (1991), 72-78.