[2] W. J. Blok and D. Pigozzi, Algebraizable Logics, Mem. Amer. Math. Soc. 396 (1989).
[3] W. J. Blok and D. Pigozzi, On the structure of varieties with equationally definable principal congruences III, Algebra Universalis, to appear.
[4] B. Bosbach, Komplementäre Halbgruppen. Kongruenzen und Quotienten, Fund. Math. 64 (1970), 1-14.
[5] J. R. Büchi and T. M. Owens, Complemented monoids and hoops, unpublished manuscript.
[6] C. C. Chang, A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80.
[7] W. H. Cornish, A large variety of BCK-algebras, Math. Japon. 26 (1981), 339-342.
[8] I. M. A. Ferreirim, On varieties and quasivarieties of hoops and their reducts, thesis, Univ. of Illinois at Chicago, 1992.
[9] I. Fleischer, Every BCK-algebra is a set of residuables in an integral pomonoid, J. Algebra 119 (1988), 360-365.
[10] H. Gaitan, Quasivarieties of Wajsberg algebras, J. Non-Classical Logic 8 (1991), 79-101.
[11] D. Higgs, Dually residuated commutative monoids with identity element do not form an equational class, Math. Japon. 29 (1984), 69-75.
[12] W. C. Holland, A. H. Mekler, and N. R. Reilly, Varieties of lattice-ordered groups in which prime powers commute, Algebra Universalis 23 (1986), 196-214.
[13] Y. Komori, Super-Łukasiewicz implicational logics, Nagoya Math. J. 72 (1978), 127-133.
[14] H. Ono and Y. Komori, Logics without the contraction rule, J. Symbolic Logic 50 (1985), 169-201.
[15] M. Pałasiński, An embedding theorem for BCK-algebras, Math. Seminar Notes Kobe Univ. 10 (1982), 749-751.
[16] R. Wójcicki, On matrix representations of consequence operations of Łukasiewicz's sentential calculi, Z. Math. Logik Grundlag. Math. 19 (1973), 239-247.
[17] A. Wroński, An algebraic motivation for BCK-algebras, Math. Japon. 30 (1983), 187-193.
[18] A. Wroński, BCK-algebras do not form a variety, ibid. 28 (1983), 211-213.,