We study the enclosing problem for discrete and continuous dynamical systems in the context of computer assisted proofs. We review and compare the existing methods and emphasize the importance of developing a suitable set arithmetic for efficient algorithms solving the enclosing problem.
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A.
Bibliografia
[1] R. Anguelov, Wrapping function of the initial value problem for ODE: Applications, Reliab. Comput. 5 (1999), 143-164.
[2] R. Anguelov and S. Markov, Wrapping effect and wrapping function, ibid. 4 (1998), 311-330.
[3] G. F. Corliss and R. Rihm, Validating an a priori enclosure using high-order Taylor series, in: Scientific Computing and Validated Numerics (Wuppertal, 1995), Math. Res. 90, Akademie-Verlag, Berlin, 1996, 228-238.
[4] Z. Galias and P. Zgliczyński, Computer assisted proof of chaos in the Lorenz system, Phys. D 115 (1998) 165-188.
[5] E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I, Nonstiff Problems, Springer, Berlin, 1987.
[6] R. J. Lohner, Computation of guaranteed enclosures for the solutions of ordinary initial and boundary value problems, in: Computational Ordinary Differential Equations, J. R. Cash and I. Gladwell (eds.), Clarendon Press, Oxford, 1992.
[7] K. Mischaikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted proof, Bull. Amer. Math. Soc. (N.S.) 32 (1995), 66-72.
[8] K. Mischaikow and M. Mrozek, Chaos in the Lorenz equations: a computer assisted proof. Part II: details, Math. Comput. 67 (1998), 1023-1046.
[9] K. Mischaikow, M. Mrozek and A. Szymczak, Chaos in the Lorenz equations: a computer assisted proof. Part III: the classical parameter values, submitted.
[10] R. E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966.
[11] M. Mrozek, Topological invariants, multivalued maps and computer assisted proofs, Computers Math. 32 (1996), 83-104.
[12] M. Mrozek and M. Żelawski, Heteroclinic connections in the Kuramoto-Sivashin- sky equation, Reliab. Comput. 3 (1997), 277-285.
[13] A. Neumaier, The wrapping effect, ellipsoid arithmetic, stability and confidence regions, Computing Suppl. 9 (1993), 175-190.
[14] M. Warmus, Calculus of approximations, Bull. Acad. Polon. Sci. 4 (1956), 253-259.
[15] M. Warmus, Approximation and inequalities in the calculus of approximations. Classification of approximate numbers, ibid. 9 (1961), 241-245.
[16] P. Zgliczyński, Rigorous verification of chaos in the Rössler equations, in: Scientific Computing and Validated Numerics, G. Alefeld, A. Frommer and B. Lang (eds.), Akademie-Verlag, Berlin, 1996, 287-292.
[17] P. Zgliczyński, Computer assisted proof of chaos in the Hénon map and in the Rössler equations, Nonlinearity 10 (1997), 243-252.
[18] P. Zgliczyński, Remarks on computer assisted proof of chaotic behavior in ODE's, in preparation.