A harmonic function in a cylinder with the normal derivative vanishing on the boundary is expanded into an infinite sum of certain fundamental harmonic functions. The growth condition under which it is reduced to a finite sum of them is given.
Department of Mathematics and Informatics, Chiba University, Chiba 263-8522, Japan
Bibliografia
[1] M. G. Bouligand, Sur les fonctions de Green et de Neumann du cylindre, Bull. Soc. Math. France 42 (1914), 168-242.
[2] T. Carleman, Propriétés asymptotiques des fonctions fondamentales des membranes vibrantes, C. R. Skand. Math. Kongress 1934, 34-44.
[3] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1977.
[4] S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242-256.
[5] H. Weyl, Das asymptotische Verteilungsgestez der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung), Math. Ann. 71 (1912), 441-479.
[6] D. V. Widder, Functions harmonic in a strip, Proc. Amer. Math. Soc. 12 (1961), 67-72.