We show that for a polynomial mapping $F = (f₁,..., fₘ): ℂ^n → ℂ^m$ the Łojasiewicz exponent $𝓛_∞(F)$ of F is attained on the set ${z ∈ ℂ^n: f₁(z) ·...· fₘ(z) = 0}$.
Faculty of Mathematics, University of Łódź, S. Banacha 22, 90-238 Łódź, Poland
Bibliografia
[BR] R. Benedetti and J. J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1090.
[CK] J. Chądzyński and T. Krasiński, Exponent of growth of polynomial mappings of ℂ² into ℂ², in: Singularities, S. Łojasiewicz (ed.), Banach Center Publ. 20, PWN, Warszawa, 1988, 147-160.
[J] Z. Jelonek, Testing sets for properness of polynomial mappings, Inst. Math., Jagiellonian University, preprint 16 (1996), 37 pp.
[NZ] A. Némethi and A. Zaharia, Milnor fibration at infinity, Indag. Math. 3 (1992), 323-335.
[P₁] A. Płoski, Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of ℂ², Ann. Polon. Math. 51 (1990), 275-281.
[P₂] A. Płoski, A note on the Łojasiewicz exponent at infinity, Bull. Soc. Sci. Lettres Łódź 44 (17) (1994), 11-15.