We study some properties of the maximal ideal space of the bounded holomorphic functions in several variables. Two examples of bounded balanced domains are introduced, both having non-trivial maximal ideals.
Department of Mathematics, Umeå University, S-901 87 Umeå, Sweden
Bibliografia
[1] U. Cegrell, Representing measures in the spectrum of $H^∞(Ω)$, in: Complex Analysis, Proc. Internat. Workshop, Wuppertal 1990, K. Diederich (ed.), Aspects of Math. E17, Vieweg, 1991, 77-80.
[2] J. E. Fornæss and N. Øvrelid, Finitely generated ideals in A(Ω), Ann. Inst. Fourier (Grenoble) 33 (2) (1983), 77-85.
[3] T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969.
[4] T. W. Gamelin, Uniform Algebras and Jensen Measures, Cambridge Univ. Press, 1978.
[5] M. Hakim et N. Sibony, Spectre de A(Ω̅ ) pour les domaines bornés faiblement pseudoconvexes réguliers, J. Funct. Anal. 37 (1980), 127-135.
[6] J. J. Kohn, Global regularity for ∂̅ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273-292.
[7] A. Noell, The Gleason problem for domains of finite type, Complex Variables 4 (1985), 233-241.
[8] M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer, 1986.
[9] N. Sibony, Prolongement analytique des fonctions holomorphes bornées, in: Sém. Pierre Lelong 1972-73, Lecture Notes in Math. 410, Springer, 1974, 44-66.
[10] J. Siciak, Balanced domains of holomorphy of type $H^∞$, Mat. Vesnik 37 (1985), 134-144.
[11] N. Øvrelid, Generators of the maximal ideals of A(D̅), Pacific J. Math. 39 (1971), 219-223.