We present a stability theorem of Ulam-Hyers type for K-convex set-valued functions, and prove that a set-valued function is K-convex if and only if it is K-midconvex and K-quasiconvex.
Department of Mathematics, Technical University, Willowa 2, 43-309 Bielsko-Biała, Poland
Bibliografia
[1] A. Averna e T. Cardinali, Sui concetti di K-convessità (K-concavità) e di K-convessità* (K-concavità*), Riv. Mat. Univ. Parma (4) 16 (1990), 311-330.
[2] F. A. Behringer, Convexity is equivalent to midpoint convexity combined with strict quasiconvexity, Optimization (ed. K.-H. Elster, Ilmenau, Germany), 24 (1992), 219-228.
[3] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[4] Z. Daróczy and Z. Páles, Convexity with given infinite weight sequences, Stochastica 11 (1987), 5-12.
[5] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 411-416.
[6] D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952), 821-828.
[7] Z. Kominek, A characterization of convex functions in linear spaces, Zeszyty Nauk. Akad. Górniczo-Hutniczej 1277, Opuscula Math. 5 (1989), 71-74.
[8] N. Kuhn, A note on t-convex functions, in: General Inequalities 4 (Proc. Oberwolfach 1983), Internat. Ser. Numer. Math. 71, Birkhäuser, 1984, 269-276.
[9] C. T. Ng and K. Nikodem, On approximately convex functions, Proc. Amer. Math. Soc., to appear.
[10]₁ K. Nikodem, Approximately quasiconvex functions, C. R. Math. Rep. Acad. Sci. Canada 10 (6) (1988), 291-294.
[10]₂ K. Nikodem, On some class of midconvex functions, Ann. Polon. Math. 50 (1989), 145-151.
[10]₃ K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Nauk. Politech. Łódz. 559 (Rozprawy Mat. 114) (1989).
[11] H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
[12] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., 1970.