The purpose of this paper is to solve two functional equations for generalized Joukowski transformations and to give a geometric interpretation to one of them. Here the Joukowski transformation means the function $1/2 (z + z^{-1})$ of a complex variable z.
Department of Pure Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Bibliografia
[1] J. Aczél, Review for [6], Zentralblatt für Math. 139 (1968), 97.
[2] J. Aczél and H. Haruki, Commentaries on Hille's papers. Chapter 1. Functional equations, in: E. Hille, Classical Analysis and Functional Analysis. Selected Papers, R. Kallman (ed.), MIT Press, Cambridge, Mass., 1975, 651-658.
[3] L. V. Ahlfors, Complex Analysis, 2nd ed., McGraw-Hill, 1966.
[4] M. Baran, Siciak's extremal function of convex sets in $\nC^N$, Ann. Polon. Math. 48 (1988), 275-280.
[5] M. Baran, A functional equation for the Joukowski transformation, Proc. Amer. Math. Soc. 105 (1989), 423-427.
[6] H. Haruki, Studies on certain functional equations from the standpoint of analytic function theory, Sci. Rep. Osaka Univ. 14 (1965), 1-40.
[7] H. Haruki, A functional equation arising from the Joukowski transformation, Ann. Polon. Math. 45 (1985), 185-191.
[8] H. Haruki, A new functional equation characterizing generalized Joukowski transformations, Aequationes Math. 32 (1987), 327-335.
[9] G. Salmon, A Treatise on Conic Sections, Chelsea Publ. Co., New York 1957.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-apmv56z1p79bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.