Existence of positive solution to certain classes of singular and nonsingular third order nonlinear two point boundary value problems is examined using the idea of Topological Transversality.
Mathematics Department, University College Galway, National University of Ireland, Galway, Ireland
Bibliografia
[1] R. P. Agarwal, Some new results on two-point problems for higher order differential equations, Funkc. Ekvac. 29 (1986), 197-212.
[2] R. P. Agarwal, Existence-uniqueness and iterative methods for third-order boundary value problems, J. Comput. Appl. Math. 17 (1987), 271-289.
[3] L. E. Bobisud and D. O'Regan, Existence of solutions to some singular initial value problems, J. Math. Anal. Appl. 133 (1988), 214-230.
[4] J. Dugundji and A. Granas, Fixed Point Theory, Vol. 1, Monograf. Mat. 61, PWN, Warszawa 1982.
[5] A. Granas, R. B. Guenther and J. W. Lee, Nonlinear boundary value problems for ordinary differential equations, Dissertationes Math. 244 (1985).
[6] A. Granas, R. B. Guenther and J. W. Lee, Nonlinear boundary value problems for some classes of ordinary differential equations, Rocky Mountain J. Math. 10 (1980), 35-58.
[7] L. K. Jackson, Existence and uniqueness of solutions of boundary value problems for Lipschitz equations, J. Differential Equations 32 (1979), 76-90.
[8] D. O'Regan, Topological transversality: Applications to third order boundary value problems, SIAM J. Math. Anal. 18 (3) (1987), 630-641.
[9] D. O'Regan, Singular and nonsingular third order boundary value problems, Proc. Royal Irish Acad. 90A (1990), 29-42.
[10] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York 1966.
[11] S. D. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Anal. 3 (1979), 897-904.