Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 24 | 2 | 313-323

Tytuł artykułu

Disturbance modeling and state estimation for offset-free predictive control with state-space process models

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Disturbance modeling and design of state estimators for offset-free Model Predictive Control (MPC) with linear state-space process models is considered in the paper for deterministic constant-type external and internal disturbances (modeling errors). The application and importance of constant state disturbance prediction in the state-space MPC controller design is presented. In the case with a measured state, this leads to the control structure without disturbance state observers. In the case with an unmeasured state, a new, simpler MPC controller-observer structure is proposed, with observation of a pure process state only. The structure is not only simpler, but also with less restrictive applicability conditions than the conventional approach with extended process-and-disturbances state estimation. Theoretical analysis of the proposed structure is provided. The design approach is also applied to the case with an augmented state-space model in complete velocity form. The results are illustrated on a 2×2 example process problem.

Rocznik

Tom

24

Numer

2

Strony

313-323

Opis fizyczny

Daty

wydano
2014
otrzymano
2013-09-27
poprawiono
2014-01-08

Twórcy

  • Institute of Control and Computation Engineering, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

Bibliografia

  • Anderson, D. and Moore, J. (2005). Optimal Filtering, Dover Publications Inc, New York, NY.
  • Astrom, K. and Wittenmark, B. (1997). Computer Controlled Systems, Prentice Hall, Upper Saddle River, NJ.
  • Blevins, T.L., McMillan, G.K., Wojsznis, W.K. and Brown, M.W. (2003). Advanced Control Unleashed, The ISA Society, Research Triangle Park, NC.
  • Blevins, T.L., Wojsznis, W.K. and Nixon, M. (2013). Advanced Control Foundation, The ISA Society, Research Triangle Park, NC.
  • Camacho, E. and Bordons, C. (1999). Model Predictive Control, Springer Verlag, London.
  • Doyle III, F., Ogunnaike, B. and Pearson, R. (1996). Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models, Automatica 32(9): 1285-1301.
  • Gonzalez, A.H., Adam, E.J. and Marchetti, J.L. (2008). Conditions for offset elimination in state space receding horizon controllers: A tutorial analysis, Chemical Engineering and Processing 47(12): 2184-2194.
  • Hesketh, T. (1982). State-space pole-placing self-tuning regulator using input-output values, IEE Proceedings, Part D 129(4): 123-128.
  • Ławryńczuk, M. (2009). Efficient nonlinear predictive control
  • Ławryńczuk, M. and Tatjewski, P. (2010). Nonlinear predictive
  • Maciejowski, J. (2002).
  • Maeder, U. and Morari, M. (2010). Offset-free reference tracking with model predictive control, Automatica 46(9): 1469-1476.
  • Morari, M. and Maeder, U. (2012). Nonlinear offset-free model predictive control, Automatica 48(9): 2059-2067.
  • Muske, K. and Badgwell, T. (2002). Disturbance modeling for offset-free linear model predictive control, Journal of Process Control 12(5): 617-632.
  • Pannocchia, G. and Bemporad, A. (2007). Combined design of disturbance model and observer for offset-free model predictive control, IEEE Transactions on Automatic Control 52(6): 1048-1053.
  • Pannocchia, G. and Rawlings, J. (2003). Disturbance models for offset-free model predictive control, AIChE Journal 49(2): 426-437.
  • Prett, D. and Garcia, C. (1988). Fundamental Process Control, Butterworths, Boston, MA.
  • Qin, S. and Badgwell, T. (2003). A survey of industrial model predictive control technology, Control Engineering Practice 11(7): 733-764.
  • Rao, V. and Rawlings, J.B. (2009). Model Predictive Control: Theory and Design, Nob Hill Publishing, Madison, WI.
  • Rossiter, J. (2003). Model-Based Predictive Control, CRC Press, Boca Raton, FL.
  • Tatjewski, P. (2007). Advanced Control of Industrial Processes, Springer Verlag, London.
  • Tatjewski, P. (2008). Advanced control and on-line process optimization in multilayer structures, Annual Reviews in Control 32(1): 71-85.
  • Tatjewski, P. (2010). Supervisory predictive control and on-line set-point optimization, International Journal of Applied Mathematics and Computer Science 20(3): 483-495, DOI: 10.2478/v10006-010-0035-1.
  • Tatjewski, P. (2011). Disturbance modeling and state estimation for predictive control with different state-space process models, Preprints of the 18th IFAC World Congress, Milan, Italy, pp. 5326-5331.
  • Tatjewski, P. (2012). Modeling deterministic disturbances and state filtering in model predictive control with state-space models, in M. Busłowicz and K. Malinowski (Eds.), Advances in Control Theory and Automation, OWPB, Białystok, pp. 263-274.
  • Tatjewski, P. and Ławryńczuk, M. (2006). Soft computing in model-based predictive control, International Journal of Applied Mathematics and Computer Science 16(1): 7-26.
  • Wang, L. (2009). Model Predictive Control System Design and Implementation Using MATLAB, Springer Verlag, London.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-amcv24i2p313bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.