EN
This paper deals with the stability study of the nonlinear Saint-Venant Partial Differential Equation (PDE). The proposed approach is based on the multi-model concept which takes into account some Linear Time Invariant (LTI) models defined around a set of operating points. This method allows describing the dynamics of this nonlinear system in an infinite dimensional space over a wide operating range. A stability analysis of the nonlinear Saint-Venant PDE is proposed both by using Linear Matrix Inequalities (LMIs) and an Internal Model Boundary Control (IMBC) structure. The method is applied both in simulations and real experiments through a microchannel, illustrating thus the theoretical results developed in the paper.