Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 22 | 2 | 281-297

Tytuł artykułu

Localization in wireless sensor networks: Classification and evaluation of techniques

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Recent advances in technology have enabled the development of low cost, low power and multi functional wireless sensing devices. These devices are networked through setting up a Wireless Sensor Network (WSN). Sensors that form a WSN are expected to be remotely deployed in large numbers and to self-organize to perform distributed sensing and acting tasks. WSNs are growing rapidly in both size and complexity, and it is becoming increasingly difficult to develop and investigate such large and complex systems. In this paper we provide a brief introduction to WSN applications, i.e., properties, limitations and basic issues related to WSN design and development. We focus on an important aspect of the design: accurate localization of devices that form the network. The paper presents an overview of localization strategies and attempts to classify different techniques. A set of properties by which localization systems are evaluated are examined. We then describe a number of existing localization systems, and discuss the results of performance evaluation of some of them through simulation and experiments using a testbed implementation.

Rocznik

Tom

22

Numer

2

Strony

281-297

Opis fizyczny

Daty

wydano
2012
otrzymano
2011-02-18
poprawiono
2011-09-16

Twórcy

  • Institute of Control and Computation Engineering, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
  • Research and Academic Computer Network, ul. Wąwozowa 18, 02-796 Warsaw, Poland

Bibliografia

  • Ahmed, A.A., Shi, H. and Shang, Y. (2005). Sharp: A new approach to relative localization in wireless sensor networks, Proceedings of IEEE ICDCSW'05, Columbus, OH, USA, Vol. 9, pp. 892-898.
  • Akyildiz, I. and Vuran, M. (2010). Wireless Sensor Networks, John Wiley & Sons, West Sussex.
  • Aloor, G. and Jacob, L. (2010). Distributed wireless sensor network localization using stochastic proximity embedding, Computer Communications 33(6): 745-755.
  • Anderson, B., Mao, G. and Fida, B. (2007). Wireless sensor network localization techniques, Computer Networks 51(10): 2529-2553.
  • Barsocchi, P., Lenzi, S., Chessa, S. and Giuntaa, G. (2009). Virtual calibration for RSSI-based indoor localization with ieee 802.15.4, Proceedings of the IEEE International Conference on Communications (ICC), Dresden, Germany, pp. 1-5.
  • Benkic, K., Malajner, M., Planinsic, P. and Cucej, Z. (2008). Using RSSI value for distance estimation in wireless sensor networks based on ZigBee, Proceedings of the 15th International Conference on Systems, Signals and Image Processing, IWSSIP 2008, Bratislava, Slovakia, pp. 303-306.
  • Bernardeschi, C., Masci, P. and Pfeifer, H. (2008). Early prototyping of wireless sensor network algorithms in PVS, in M.D. Harrison and M.-A. Sujan (Eds.), Computer Safety, Reliability and Security, Lecture Notes in Computer Science, Vol. 5219, Springer-Verlag, Berlin/Heidelberg/New York, NY, pp. 346-359.
  • Beutel, J. (2005). Handbook of Sensor Networks Compact Wireless and Wired Sensing Systems, CRC Press, Boca Raton, FL.
  • Biswas, P. and Ye, Y. (2004). Semidefinite programming for ad hoc wireless sensor network localization, IPSN '04: Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks, Berkeley, CA, USA, pp. 46-54.
  • Boyd, S., Ghaoui, L. E., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, Studies in Applied Mathematics, Vol. 15, SIAM, Philadelphia, PA.
  • Cheng, X., Thaeler, A., Xue, G. and Chen, D. (2004). TPS: A time-based positioning scheme for outdoor wireless sensor networks, Proceedings of IEEE INFOCOM'04, Hong Kong, China, Vol. 4, pp. 2685-2696.
  • Chuang, P. and Wu, C. (2008). An effective PSO-based node localization scheme for wireless sensor networks, Proceedings of the 9th International Conference on Parallel and Distributed Computing Applications and Technologies, Dunedin, New Zealand, pp. 187-194.
  • Costa, J., Patwari, N. and Hero, A. (2006). Distributed weightedmultidimensinal scaling for node localization in sensor networks, ACM Transactions on Sensor Networks 2(1): 39-64.
  • Di Caro, G. (2003). Analysis of simulation environments for mobile ad hoc networks, Technical Report IDSIA-24-03, IDSIA, Manno.
  • Hu, L. and Evans, D. (2004). Localization for mobile sensor networks, ACM MobiCom, Philadelphia, PA, USA, pp. 45-57.
  • Heurtefeux, K. and Valois, F. (2008). Distributed qualitative localization for wireless sensor networks, in D. Coudert, D. Simplot-Ry and I. Stojmenovic (Eds.), Ad-hoc, Mobile and Wireless Networks, Lecture Notes in Computer Science, Vol. 5198, Springer-Verlag, Berlin/Heidelberg, pp. 218-229.
  • Elnahrawy, E., Li, X. and Martin, R. (2004). The limits of localization using signal strength: A comparative study, Proceedings of the IEEE Sensor and Ad hoc Communications and Networks Conference (SECON 2004), Santa Clara, CA, USA, pp. 333-341.
  • Kannan, A., Mao, G. and Vucetic, B. (2005). Simulated annealing based localization in wireless sensor network, LCN'05: Proceedings of the IEEE Conference on Local Computer Networks, 30th Anniversary, Washington, DC, USA, pp. 513-514.
  • Kannan, A., Mao, G. and Vucetic, B. (2006). Simulated annealing based wireless sensor network localization with flip ambiguity mitigation, 63rd IEEE Vehicular Technology Conference, Melbourne, Australia, pp. 1022-1026.
  • Karakehayov, Z. (2009). Multobjective design of wireless ad hoc networks: Security, real-time and lifetime, Journal of Telecommunications and Information Technology (2): 13-21.
  • Karl, H. and Willig, A. (2005). Protocols and Architectures for Wireless Sensor Networks, John Wiley & Sons, West Sussex.
  • Kasch, W., Ward, J. and Andrusenko, J. (2008). Wireless network modeling and simulation tools for designers and developers, IEEE Communications Magazine 47(3): 120-127.
  • Lee, J., Chung, W. and Kim, E. (2010). A new range-free localization method using quadratic programming, Computer Communications 34(8): 998-1010.
  • Li, C., Li, Y., Shen, Y., Liu, L. and Cao, Q. (2010). An optimization algorithm for wireless sensor networks localization using multiplier method, Proceedings of the 3rd International Joint Conference on Computational Science and Optimization, Huangshan, Anhui, China, pp. 337-341.
  • Liu, L. and E, M. (2010). Localization for wireless sensor networks by combining TFDA and FMCW, Proceedings of the IEEE International Conference on Mechatronics and Automation, Xian, China, pp. 945-950.
  • Magnani, A. and Leung, K. (2007). Self-organized, scalable GPS-free localization of wireless sensors, IEEE WCNC, Hong Kong, China, pp. 3798-3803.
  • Mao, G. and Fidan, B. (2009). Localization Algorithms and Strategies for Wireless Sensor Networks, Information Science Reference, Hershey, PA.
  • Marks, M. (2010). A survey of multi-objective deployment in wireless sensor networks, Journal of Telecommunications and Information Technology (3): 36-41.
  • Marks, M. and Niewiadomska-Szynkiewicz, E. (2009). Multiobjective approach to localization in wireless sensor networks, Journal of Telecommunications and Information Technology (3): 59-67.
  • Medidi, M., Slaaen, R., Zhou, Y., Mallery, C. and Medidi, S. (2006). Cluster-based localization in wireless sensor networks, Proceedings of SPIE, Wireless Sensing and Processing 6248(62480J): 1-8.
  • Motter, P., Allgayer, R., Müller, I. and de Freitas, E. (2011). Practical issues in wireless sensor network localization systems using received signal strength indication, Proceedings of the Sensors Applications Symposium (SAS), San Antonio, TX, USA, pp. 227-232.
  • Niculescu, D. and Nath, B. (2001). Ad hoc positioning system (APS), GLOBECOM: Global Telecommunications Conference, San Antonio, TX, USA, Vol. 5, pp. 2926-2931.
  • Niewiadomska-Szynkiewicz, E. and Marks, M. (2009). Optimization schemes for wireless sensor network localization, International Journal of Applied Mathematics and Computer Science 19(2): 291-302, DOI: 10.2478/v10006-0090025-3.
  • Olveczky, P. and Thorvaldsen, S. (2007). Formal modeling and analysis of the OGDC wireless sensor network algorithm in real-time maude, Proceedings of the 9th IFIP International Conference on Formal Methods for Open Object-Based Distributed Systems, Paphos, Cyprus, pp. 122-140.
  • Pawlikowski, K., Jeong, H. and Lee, J. (2002). On credibility of simulation studies of telecommunication networks, IEEE Communications Magazine 40(1): 132-139.
  • Rappapport, T. (2002). Wireless Communications: Principles and Practice, Communications Engineering and Emerging Technologies Series, Prentice Hall, Upper Saddle River, NJ.
  • Salzmann, J., Behnke, R., Gorski, P. and Timmermann, D. (2011). HyPAERLoc: Plausible hybrid localization for wireless sensor networks, Proceedings of SENSORCOMM 2011, Nice, France, pp. 51-57.
  • Santi, P. (2006). Topology Control in Wireless Ad Hoc and Sensor Networks, John Wiley & Sons, West Sussex.
  • Sarigiannidis, G. (2007). Localization For Ad Hoc Wireless Sensor Networks, LL, Delft.
  • Savvides, A., Han, C. and Strivstava, M. (2001). Dynamic finegrained localization in ad-hoc networks of sensors, Proceedings of ACM MobiCom, Rome, Italy, pp. 166-179.
  • Sayadnavard, M., Haghighat, A. and Abdechiri, M. (2010). Wireless sensor network localization using imperialist competitive algorithm, Proceedings of the 3rd IEEE International Conference on Computer Science and Information Technology, Chengdu, China, Vol. 9, pp. 818-822.
  • Shang, Y., Ruml, W., Zhang, Y. and Fromherz, M. (2004). Distributed weighted-multidimensinal scaling for node localization in sensor networks, IEEE Transactions on Parallel and Distributed Systems 15(11): 961-674.
  • Shekofteh, S., Yaghmaee, M., Khalkhali, M. and Deldari, H. (2010). Localization in wireless sensor networks using tabu search and simulated annealing, Proceedings of the 2nd International Conference on Computer and Automation Engineering (ICCAE), Singapore, pp. 752-757.
  • Shi, Q., He, C., Chen, H. and Jiang, L. (2010). Distributed wireless sensor network localization via sequential greedy optimization algorithm, IEEE Transactions on Signal Processing 58(6): 3328-3340.
  • Shi, Q., He, C., Ljang, L. and Luo, J. (2008). Sensor network localization via nondifferentiable optimization, Proceedings of IEEE GLOBECOM, New Orleans, LA, USA, pp. 1-5.
  • Shi, Q., He, C., Ljang, L. and Luo, J. (2009). Normalized incremental subgradient algorithm and its application, IEEE Transactions on Signal Processing 57(10): 3759-3774.
  • Shu, J., Zhang, R., Liu, L., Wu, Z. and Zhou, Z. (2009). Cluster-based three-dimensional localization algorithm for large scale wireless sensor networks, Journal of Computers 4(7): 585-592.
  • Sichitiu, M.L. and Ramadurai, V. (2004). Localization of wireless sensor networks with a mobile bacon, Proceedings of the IEEE International Conference on Mobile Ad-hoc and Sensor Systems, Fort Lauderdale, FL, USA, pp. 174-183.
  • Srirangarjan, A., Tewfik, H. and Luo, Z. Q. (2008). Distributed sensor network localization using SOCP relaxation, IEEE Transactions on Wireless Communication 7(12): 4886-4895.
  • Su, K. F., Ou, C. H. and Jiau, H. C. (2005). Localization with mobile anchor points in wireless sensor networks, IEEE Transactions on Vehicular Technology 54(3): 1187-1197.
  • Tam, V., Cheng, K. and Lui, K. (2006). A descent-based evolutionary approach to enhance position in wireless sensor networks, Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06), Washington, DC, USA, pp. 568-574.
  • Tseng, P. (2007). Second-order cone programming relaxation of sensor network localization, SIAM Journal on Optimization 18(1): 156-185.
  • Vecchio, M., Lopez-Valcarce, R. and Marcelloni, F. (2012). A two-objective evolutionary approach based on topological constraints for node localization in wireless sensor networks, Applied Soft Computing 12(7): 1891-1901.
  • Verdone, R., Dardari, D., Mazzini, G. and Conti, A. (2008). Wireless Sensor Networks and Actuator Networks. Technologies, Analysis and Design, Elsevier, London.
  • Vo, N., Vo, D., Challa, S. and Lee, S. (2008). Nonmetric MDS for sensor localization, Proceedings of the International Symposium on Wireless Pervasive Computing, Karlsruhe, Germany, pp. 396-400.
  • Wang, Z., Zheng, S., Ye, Y. and Boyd, S. (2008). Further relaxation of the semidefinite programming approach to sensor network localization, SIAM Journal on Optimization 19(2): 655-673.
  • Wessels, A., Wangb, X., Laurb, R. and Langa, W. (2010). Dynamic indoor localization using multilateration with RSSI in wireless sensor networks for transport logistics, Procedia Engineering 5: 220-223.
  • Whitehouse, K., Karlof, C. and Culler, D. (2007). A practical evaluation of radio signal strength for ranging-based localization, Mobile Computing and Communications Review 11(1): 41-52.
  • Yu, G., Yu, F. and Feng, L. (2008). A three dimensional localization algorithm using a mobile anchor node under wireless channel, Proceedings of the IEEE International Conference on Neural Networks, Hong Kong, China, pp. 477-483.
  • Zhang, B. and Yu, F. (2010a). An event-triggered localization algorithm for mobile wireless sensor networks, Proceedings of the 2nd IEEE International Conference on Future Computer and Communication, Melbourne, Australia, Vol. 1, pp. 250-253.
  • Zhang, B. and Yu, F. (2010b). A feasible localization algorithm for wireless sensor networks using directional antenna, Proceedings of the 12th IEEE International Conference on High Performance Computing and Communications, Melbourne, Australia, pp. 354-361.
  • Zuniga, M. and Krishnamachari, B. (2004). Analyzing the transitional region in low power wireless links, Proceedings of the 1st International Conference on Sensor and Ad Hoc Communications and Networks, SECON, Santa Clara, CA, USA, pp. 517-526.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-amcv22i2p281bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.