Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 20 | 3 | 545-553

Tytuł artykułu

Surrogate data: A novel approach to object detection

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the present study a novel method is introduced to detect meaningful regions of a gray-level noisy images of binary structures. The method consists in generating surrogate data for an analyzed image. A surrogate image has the same (or almost the same) power spectrum and histogram of gray-level values as the original one but is random otherwise. Then minmax paths are generated in the original image, each characterized by its length, minmax intensity and the intensity of the starting point. If the probability of the existence of a path with the same characteristics but within surrogate images is lower than some user-specified threshold, it is concluded that the path in the original image passes through a meaningful object. The performance of the method is tested on images corrupted by noise with varying intensity.

Słowa kluczowe

Rocznik

Tom

20

Numer

3

Strony

545-553

Opis fizyczny

Daty

wydano
2010
otrzymano
2009-10-29
poprawiono
2010-03-15

Twórcy

  • Institute of Applied Informatics, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Cracow, Poland

Bibliografia

  • Brunelli, R. (2009). Template Matching Techniques in Computer Vision: Theory and Practice, Wiley, New York, NY.
  • Buades, A., Coll, B. and Morel, J.M. (2005). A review of image denoising algorithms, with a new one, Multiscale Modeling and Simulation 4 (2): 490-530.
  • Cormen, T.H., Leiserson, C.E. and Rivest, R.L. (1990). Introduction to Algorithms, MIT Press, Cambridge, MA.
  • Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition, 2nd Edn., Academic Press, New York, NY.
  • Fu, K.S. (1982). Syntactic Pattern Recognition and Applications, Prentice-Hall, Englewood Cliffs, NJ.
  • Ripley, B.D. (2008). Pattern Recognition and Neural Networks, Cambridge University Press, Cambridge.
  • Rosenfeld, A. (1983). On connectivity properties of grayscale pictures, Pattern Recognition 16(1): 47-50.
  • Schreiber, T. and Schmitz, A. (2000). Surrogate time series, Physica D 142 (3-4): 346-382.
  • Stauffer, D. and Aharony, A. (1994). Introduction to Percolation Theory, 2nd Edn., Taylor & Francis, Philadelphia, PA.
  • Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. and Farmer, J.D. (1992). Testing for nonlinearity in time series: The method of surrogate data, Physica D 58(1-4): 77-94.
  • Udupa, J.K. and Saha, P.K. (2003). Fuzzy connectedness and image segmentation, Proceedings of the IEEE 91(10): 1649-1669.
  • Watanabe, S. (1985). Pattern Recognition: Human and Mechanical, Wiley, New York, NY.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-amcv20i3p545bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.