Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 19 | 2 | 291-302

Tytuł artykułu

Optimization schemes for wireless sensor network localization

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Many applications of wireless sensor networks (WSN) require information about the geographical location of each sensor node. Self-organization and localization capabilities are one of the most important requirements in sensor networks. This paper provides an overview of centralized distance-based algorithms for estimating the positions of nodes in a sensor network. We discuss and compare three approaches: semidefinite programming, simulated annealing and two-phase stochastic optimization-a hybrid scheme that we have proposed. We analyze the properties of all listed methods and report the results of numerical tests. Particular attention is paid to our technique-the two-phase method-that uses a combination of trilateration, and stochastic optimization for performing sensor localization. We describe its performance in the case of centralized and distributed implementations.

Rocznik

Tom

19

Numer

2

Strony

291-302

Opis fizyczny

Daty

wydano
2009
otrzymano
2008-07-03
poprawiono
2009-02-15

Twórcy

  • Research and Academic Computer Network, ul. Wąwozowa 18, 02-796 Warsaw, Poland
  • Institute of Control and Computation Engineering, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
  • Research and Academic Computer Network, ul. Wąwozowa 18, 02-796 Warsaw, Poland
  • Institute of Control and Computation Engineering, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland

Bibliografia

  • Anderson, B. D. O., Mao, G. and Fidan, B. (2007). Wireless sensor network localization techniques, Computer Networks 51(10): 2529-2553.
  • Biswas, P. and Ye, Y. (2004). Semidefinite programming for ad hoc wireless sensor network localization, IPSN '04: Proceedings of the 3-rd International Symposium on Information Processing in Sensor Networks, Berkeley, CA, USA, ACM Press, New York, NY, pp. 46-54.
  • Borchers, B. (1999). CSDP, a C library for semidefinite programming, Optimization Methods & Software 11(1-4): 613-623.
  • Boyd, S., Ghaoui, L. E., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA.
  • de Brito, L. M. P. L. and Peralta, L. M. R. (2007). Collaborative localization in wireless sensor networks, SENSORCOMM 2007: Proceedings of the International Conference on Sensor Technologies and Applications, Valencia, Spain, IEEE Computer Society, pp. 94-100.
  • Dekkers, A. and Aarts, E. (1991). Global optimization and simulated annealing, Mathematical Programming 50(8): 367-393.
  • Doherty, L., Pister, K. and Ghaoui, L. E. (2001). Convex postion estimation in wireless sensor networks, INFOCOM 2001: Proceedings of the 20-th Annual Joint Conference of the IEEE Computer and Communications Societies, Anchorage, USA, pp. 1655-1663.
  • Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning, Studies in Applied Mathematics, Addison-Wesley, Boston, MA.
  • Hightower, J. and Borriello, G. (2001). Localization systems for ubiquitous computing, Computer 34(8): 57-66.
  • Hu, L. and Evans, D. (2004). Localization for mobile sensor networks, MobiCom 2004: Proceedings of the 10-th Annual International Conference on Mobile Computing and Networking, Philadelphia, PA, USA, IEEE Computer Society, pp. 45-57.
  • Ji, X. and Zha, H. (2004). Sensor positioning in wireless adhoc sensor networks with multidimensional scaling, INFOCOM 2004: Proceedings of the 23-rd Annual Joint Conference of the IEEE Computer and Communications Societies, Hong Kong, China, pp. 2652-2661.
  • Kannan, A. A., Mao, G. and Vucetic, B. (2005). Simulated annealing based localization in wireless sensor network, LCN '05: Proceedings of the IEEE Conference on Local Computer Networks. 30-th Anniversary, Sydney, Australia, IEEE Computer Society, pp. 513-514.
  • Kannan, A. A., Mao, G. and Vucetic, B. (2006). Simulated annealing based wireless sensor network localization with flip ambiguity mitigation, Proceedings of the 63-rd IEEE Vehicular Technology Conference, Melbourne, Australia, pp. 1022-1026.
  • Marks, M. and Niewiadomska-Szynkiewicz, E. (2007). Twophase stochastic optimization to sensor network localization, SENSORCOMM 2007: Proceedings of the International Conference on Sensor Technologies and Applications, Valencia, Spain, IEEE Computer Society, pp. 134-139.
  • Niculescu, D. and Nath, B. (2001). Ad hoc positioning system (APS), GLOBECOM: Proceeding of the Global Telecommunications Conference, San Antonio, CA, USA, pp. 2926-2931.
  • Shang, Y., Ruml, W., Zhang, Y. and Fromherz, M. (2004). Localization from connectivity in sensor networks, IEEE Transactions on Parallel and Distributed Systems 15(11): 961-974.
  • Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods & Software 11(1-4): 625-653.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-amcv19i2p291bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.