Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 17 | 1 | 15-22

Tytuł artykułu

Equivalence and reduction of delay-differential systems

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A new direct method is presented which reduces a given high-order representation of a control system with delays to a first-order form that is encountered in the study of neutral delay-differential systems. Using the polynomial system description (PMD) setting due to Rosenbrock, it is shown that the transformation connecting the original PMD with the first-order form is Fuhrmann's strict system equivalence. This type of system equivalence leaves the transfer function and other relevant structural properties of the original system invariant.

Rocznik

Tom

17

Numer

1

Strony

15-22

Opis fizyczny

Daty

wydano
2007
otrzymano
2006-11-01
poprawiono
2007-02-18

Twórcy

  • Department of Mathematics and Statistics Sultan Qaboos University, PO Box 36 Al-Khodh, 123, Muscat, Oman

Bibliografia

  • Boudellioua M.S. (2006): An equivalent matrix pencil for bivariate polynomial matrices. - Int. J. Appl. Math. Comput. Sci., Vol.16, No.2, pp.175-181.
  • Byrnes C.I., Spong M.W. and Tarn T.J. (1984): A several complex variables approach to feedback stabilization of linear neutral delay-differential systems. - Math. Syst. Theory, Vol.17, No.2, pp.97-133.
  • Fuhrmann P.A. (1977): On strict system equivalence and similarity. - Int. J. Contr., Vol.25, No.1, pp.5-10.
  • Johnson D.S. (1993): Coprimeness in multidimensional system theory and symbolic computation. - Ph.D. thesis, Loughborough University of Technology, UK.
  • Levy B.C. (1981): 2-D polynomial and rational matrices and their applications for the modelling of 2-D dynamical systems. - Ph.D. thesis, Stanford University, USA.
  • Pugh A.C., McInerney S.J., Boudellioua M.S. and Hayton G.E. (1998a): Matrix pencil equivalents of a general 2-D polynomial matrix.- Int. J. Contr., Vol.71, No.6, pp.1027-1050.
  • Pugh A.C., McInerney S.J., Boudellioua M.S., Johnson D.S. and HaytonG.E. (1998b): A transformation for 2-D linear systems and a generalization of a theorem of Rosenbrock. - Int. J. Contr., Vol.71, No.3, pp.491-503.
  • Pugh A.C., McInerney S.J. and El-Nabrawy E.M.O. (2005a): Equivalence and reduction of 2-D systems.- IEEE Trans. Circ. Syst., Vol.52, No.5, pp.371-275.
  • Pugh A.C., McInerney S.J. and El-Nabrawy E.M.O. (2005b): Zero structures of n-D systems.- Int. J. Contr., Vol.78, No.4, pp.277-285.
  • Pugh A.C., McInerney S.J., Hou M. and Hayton G.E. (1996): A transformation for 2-D systems and its invariants. - Proc. 35th IEEE Conf. Decision and Control, Kobe, Japan, pp.2157-2158.
  • Rosenbrock H.H. (1970): State Space and Multivariable Theory.- London: Nelson-Wiley.
  • Sebek M. (1988): One more counterexample in n-D systems - Unimodular versus elementary operations. - IEEE Trans. Autom. Contr., Vol.AC-33(5), pp.502-503.
  • Zerz E. (2000): Topics in Multidimensional Linear Systems Theory. - London: Springer

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-amcv17i1p15bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.