Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 15 | 1 | 125-140

Tytuł artykułu

A new definition of the fuzzy set

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The present fuzzy arithmetic based on Zadeh's possibilistic extension principle and on the classic definition of a fuzzy set has many essential drawbacks. Therefore its application to the solution of practical tasks is limited. In the paper a new definition of the fuzzy set is presented. The definition allows for a considerable fuzziness decrease in the number of arithmetic operations in comparison with the results produced by the present fuzzy arithmetic.

Słowa kluczowe

Rocznik

Tom

15

Numer

1

Strony

125-140

Opis fizyczny

Daty

wydano
2005
otrzymano
2004-03-15
poprawiono
2004-09-05

Twórcy

  • Faculty of Computer Science and Information Systems, Technical University of Szczecin, ul.Żołnierska 49, 71-210 Szczecin, Poland

Bibliografia

  • Bezdek J. (1993): ditorial, fuzzy models - What are they, and why?.- IEEE Trans. Fuzzy Syst., Vol. 1, No. 1, pp. 1-6.
  • Driankov D., Hellendorn H. and Reinfrank M. (1993): An Introduction to Fuzzy Control. - Berlin:Springer.
  • Dubois D. and Prade H. (1988): Possibility Theory. - New York: Plenum Press.
  • Dubois D. and Prade H. (1996): An introduction to fuzzy systems. - Int. J. Appl. Math. Comput. Sci., Vol. 6, No. 3, pp. 485-503.
  • Dubois D. and Prade H. (1997): The three semantics of fuzzy sets. - Fuzzy Sets Syst., Vol. 90, No. 2, pp.141-150.
  • Kaufmann A. and Gupta M.M. (1991): Introduction to Fuzzy Arithmetic.- New York: Van Nostrand Reinhold.
  • Klir G.J. (1997): Fuzzy arithmetic with requisite constraints. - Fuzzy Sets Syst., Vol. 91, pp. 165-175.
  • Klir G.J. and Folger T.A. (1988): Fuzzy Sets, Uncertainty, and Information.- Englewood Cliffs: Prentice Hall.
  • Kosiński W., Prokopowicz P. and Ślęzak D. (2003): Ordered fuzzy numbers.- Bull. Polish Acad. Sci. Math., Vol. 51, No. 3, pp. 329-341.
  • Pearsal J. (Ed.) (1999): The New Oxford Dictionary of English.- Oxford: Oxford University Press.
  • Piegat A. (2001): Fuzzy Modeling and Control. - Heidelberg, New York: Springer-Verlag.
  • Piegat A. (2004): Is fuzzy evaluation a measurement? In: Soft Computing, Tools, Techniques and Applications (P. Grzegorzewski, M. Krawczakand S. Zadrożny, Eds.). - Warszawa:Akademicka Oficyna Wydawnicza EXIT, pp. 257-266.
  • Piegat A. (2005a): On practical problems with explanation of the difference between possibility and probability. - Contr. Cybern., (accepted for publication in No. 2 in 2005).
  • Piegat A. (2005b): Informative value of the possibilistic extension principle, In: Enhanced Methods in Computer Security, Biometric and Artificial Intelligence Systems (J. Pejas and A. Piegat, Eds.).- New York: Springer Science Business Media, Inc., pp. 301-310.
  • Yager R.R. and Filev D.P. (1994): Essentials of Fuzzy Modeling and Control. - London: Wiley.
  • Zadeh L.A. (1965): Fuzzy Sets. - Inf. Contr., Vol. 8, No. 3, pp. 338-353.
  • Zadeh L.A. (1978): Fuzzy sets as a basis for a theory of possibility. - Fuzzy Sets Syst., Vol. 1, No. 28, pp. 3-28.
  • Zadeh L.A. (2002): From computing with numbers to computing with words - From manipulation of measurements to manipulation of perceptions. - Int. J. Appl. Math. Comput. Sci., Vol. 12, No. 3, pp. 307-324.
  • Zimmermann H.J. (1996): Fuzzy Set Theory. - Boston: Kluwer.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-amcv15i1p125bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.