We study the construction of an outer factor to a positive definite Popov function of a distributed parameter system. We assume that is a non-negative definite matrix with non-zero determinant. Coercivity is not assumed. We present a penalization approach which gives an outer factor just in the case when there exists any outer factor.
Politecnico di Torino, Dipartimento di Matematica, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
Bibliografia
Anderson B.D.O. (1967): A system theory criterion for positive real matrices. — SIAM J. Contr., Vol.5, pp.171–182.
Anderson B.D.O. and Vongpanitlered S. (1973): Network Analysis and Synthesis: A Modern Systems Theory Approach. — Englewood Cliffs, N.J: Prentice–Hall.
Balakrishnan A.V. (1995): On a generalization of the Kalman–Yakubovich Lemma. — Appl. Math. Optim., Vol.31, No.2, pp.177–187.
Callier F.M. and Winkin J. (1990): On spectral factorization and LQ-optimal regulation for multivariable distributed systems. — Int. J. Contr., Vol.52, No.1, pp.55–75.
Callier F.M. and Winkin J. (1992): LQ-optimal control of infinite-dimensional systems by spectral factorization. — Automatica, Vol.28, No.4, pp.757–770.
Callier F.M. and Winkin J. (1999): The spectral factorization problem for multivariable distributed parameter systems. — Int. Eqns. Oper. Theory, Vol.34, No.3, pp.270–292.
Fattorini O. (1968): Boundary control systems. — SIAM J. Contr. Optim., Vol.6, pp.349–385.
Francis B.A., (1987): A Course in H∞ Control Theory. — Berlin: Springer-Verlag.
Kalman R.E. (1963): Lyapunov functions for the problem of Lur’e in automatic control. — Proc. Nat. Acad. Sci., USA, Vol.49, pp.201–205.
Lasiecka I. and Triggiani R. (2000): Control theory for partial differential equations. — Encyclopaedia of Mathematics and its Applications, Vols. 74 and 75, Cambridge: Cambridge University Press.
Louis J-Cl. and Wexler D. (1991): The Hilbert space regulator problem and operator Riccati equation under stabilizability. — Annales de la Soc. Scient. de Bruxelles, Vol.105, No.4, pp.137–165.
Nikolski N. (1982): Lectures on the Shift Operator. — Berlin: Springer-Verlag.
Pandolfi L. (1994): From singular to regular control systems. — Proc. Conf. Control of Partial Differential Equations, New York: M. Dekker, pp.153–165.
Pandolfi L. (1995): The standard regulator problem for systems with input delays: an approach through singular control theory. — Appl. Math. Optim., Vol.31, No.2, pp.119–136. Pandolfi L. (1997): The Kalman–Yakubovich–Popov Theorem: an overview and new results for hyperbolic control systems. — Nonlin. Anal., Vol.30, No.2, pp.735–745.
Pandolfi L. (1998): Dissipativity and Lur’e problem for parabolic boundary control systems. — SIAM J. Contr. Optim., Vol.36, No.6, pp.2061–2081.
Pandolfi, L. (1999a): The Kalman-Yakubovich-Popov theorem for stabilizable hyperbolic boundary control systems. — Int. Eqns. Oper. Theory, Vol.34, pp.478–493.
Pandolfi L. (1999b): Recent results on the Kalman-Popov-Yakubovich problem. — Proc. Int. Conf. Mathematics and its Applications, Yogyakarta, Indonesia, pp.47–60.
Rosenblum M. and Rovnyak J. (1985): Hardy Classes and Operator Theory. — New York: Oxford U.P.
Riesz F. and Sz-Nagy B. (1955): Functional Analysis. — New York: F. Ungar.
Yakubovich V.A. (1973): The frequency theorem in control theory. — Siberian Math. J., Vol.14, pp.384-419.
Youla D.C. (1961): On the factorization of rational matrices. — IRE Trans. Inf. Theory, Vol.IT–7, pp.172–189.