School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
Bibliografia
[BR1] R. Balasubramanian and K. Ramachandra, Some problems of analytic number theory II, Studia Sci. Math. Hungar. 14 (1997), 193-202.
[BR2] R. Balasubramanian and K. Ramachandra, On an analytic continuation of ζ(s), Indian J. Pure Appl. Math. 18 (1987), 790-793.
[CGG] J. B. Conrey, A. Ghosh and S. M. Gonek, Simple zeros of zeta-functions, in: Colloq. de Théorie Analytique des Nombres, Université de Paris Sud, 1985, 77-83.
[G] E. Grosswald, Sur une propriété des racines complexes des fonctions L(s, χ), C. R. Acad. Sci. Paris 260 (1965), 4299-4302.
[J] M. Jutila, The fourth power moment of the Riemann zeta-function over a short interval, in: Number Theory, Vol. I (Budapest, 1987), Colloq. Math. Soc. János Bolyai 51, North-Holland, Amsterdam, 1990, 221-244.
[KP] J. Kaczorowski and A. Perelli, Functional independence of the singularities of a class of Dirichlet series, Amer. J. Math. 120 (1998), 289-303.
[MV] H. L. Montgomery and R. C. Vaughan, Hilbert's inequality, J. London Math. Soc. (2) 8 (1974), 73-82.
[R1] K. Ramachandra, On the Mean-Value and Omega-Theorems for the Riemann Zeta-Function, Tata Inst. Fund. Res. Lectures on Math. and Phys. 85, Springer, 1995.
[R2] K. Ramachandra, Riemann Zeta-Function, Ramanujan Institute, University of Madras, Chennai, 1979 (a pamphlet, 16 pp.).
[RS] K. Ramachandra and A. Sankaranarayanan, Notes on the Riemann zeta-function, I, J. Indian Math. Soc. 57 (1991), 67-77.
[T] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., revised and edited by D. R. Heath-Brown, Clarendon Press, Oxford, 1986.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav91i4p351bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.