IMA, University of Minnesota, 514 Vincent Hall, 206 Church Street S.E., Minneapolis, Minnesota 55455, U.S.A.
Bibliografia
[1] R. E. Crandall, On the 3x+1 problem, Math. Comp. 32 (1978), 1281-1292.
[2] J. M. Dolan, A. F. Gilman and S. Manickam, A generalization of Everett's result on the Collatz 3x+1 problem, Adv. in Appl. Math. 8 (1987), 405-409.
[3] S. Eliahou, The 3x+1 problem: New lower bounds on nontrivial cycle lengths, Discrete Math. 118 (1993), 45-56.
[4] I. Krasikov, How many numbers satisfy the 3x+1 conjecture ? Internat. J. Math. Sci. 12(4) (1989), 791-796.
[5] J. C. Lagarias, The 3x+1-problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23.
[6] J. C. Lagarias, The set of rational cycles for the 3x+1 problem, Acta Arith. 56 (1990), 33-53.
[7] G. Leavens and M. Vermeulen, private communication.
[8] J. W. Sander, On the (3N+1)-conjecture, Acta Arith. 55 (1990), 241-248.
[9] B. G. Seifert, On the arithmetic of cycles for the Collatz-Hasse(Syracuse) conjectures, Discrete Math. 68 (1988), 293-298.
[10] G. Wirsching, An improved estimate concerning 3n+1 predecessor sets, Acta Arith. 63 (1993), 205-210.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav78i3p227bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.