Department of Mathematics, Vilnius University, Naugarduko, 24 2006 Vilnius, Lithuania
Bibliografia
[1] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta function and other allied Dirichlet series, Ph.D. thesis, Indian Statistical Institute, Calcutta, 1981.
[2] P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
[3] H. Cramér and M. R. Leadbetter, Stationary and Related Stochastic Processes, Wiley, New York, 1967.
[4] A. Laurinčikas, On limit theorems for the Riemann zeta function in some spaces, in: Probab. Theory and Math. Statistics, Proceeding of Sixth Vilnius Intern. Conf., B. Grigelionis et al. (eds.), VSP//TEV, 1994, 457-483.
[5] A. Laurinčikas, Limit theorems for a product of the Hurwitz zeta-function, Liet. Mat. Rink. 34 (1994), 197-210 (in Russian).
[6] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Kluwer, 1996.
[7] A. Laurinčikas and G. Misevičius, A limit theorem with weight for the Riemann zeta-function in the space of analytic functions, Liet. Mat. Rink. 34 (1994), 211-224 (in Russian).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav76i4p317bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.