Faculty of Mathematics and Computer Science, A. Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland
Bibliografia
[1] J. R. Chen and T. Z. Wang, On the odd Goldbach problem, Acta Math. Sinica 32 (1989), 702-718 (in Chinese).
[2] H. Davenport, Multiplicative Number Theory, Springer, 1980.
[3] M. Deshouillers, Sur la constante de Schnirelmann, Sém. Delange-Pisot-Poitou, 17e année, 1975/6, fasc. 2, exp. No. G 16, 6 p., Paris, 1977.
[4] H. M. Edwards, Riemann's Zeta Function, Academic Press, 1974.
[5] A. Granville, J. van de Lune and H. J. J. te Riele, Checking the Goldbach conjecture on a vector computer, in: Number Theory and Applications, R. A. Mollin (ed.), Kluwer, Dordrecht, 1989, 423-433.
[6] L. Kaniecki, Some remarks on a result of A. Selberg, Funct. Approx. Comment. Math. 22 (1993), 171-179.
[7] H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith. 27 (1975), 353-370.
[8] K. Prachar, Primzahlverteilung, Springer, 1957.
[9] O. Ramaré, On Šnirelman's constant, Les prépublication de l'Institut Élie Cartan 95, no 4, to appear.
[10] H. Riesel and R. C. Vaughan, On sums of primes, Ark. Mat. 21 (1983), 45-74.
[11] L. Schoenfeld, Sharper bounds for the Čebyshev functions ψ and θ, II, Math. Comp. 30 (1976), 337-360.
[12] A. Selberg, On the normal density of primes in small intervals and the differences between consecutive primes, Arch. Math. Naturvid. (6) 47 (1943), 87-105.
[13] M. K. Shen, On checking the Goldbach conjecture, Nordisk Tidskr. 4 (1964), 243-245.
[14] M. K. Sinisalo, Checking the Goldbach conjecture up to 4· 10¹¹, Math. Comp. 61 (1993), 931-934.
[15] M. L. Stein and P. R. Stein, New experimental results on the Goldbach conjecture, Math. Mag. 38 (1965), 72-80.
[16] J. Young and A. Potler, First occurrence prime gaps, Math. Comp. 52 (1989), 221-224.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav72i4p361bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.