Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801, U.S.A.
Bibliografia
[1] L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc. 43 (1938), 359-364.
[2] G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.
[3] A. O. L. Atkin, Proof of a conjecture of Ramanujan, Glasgow Math. J. 8 (1967), 67-78.
[4] B. C. Berndt, Generalized Dedekind eta-functions and generalized Dedekind sums, Trans. Amer. Math. Soc. 178 (1973), 495-508.
[5] B. C. Berndt, Generalized Eisenstein series and modified Dedekind sums, J. Reine Angew. Math. 272 (1975), 182-193.
[6] B. C. Berndt, Reciprocity theorems for Dedekind sums and generalizations, Adv. in Math. 23 (1977), 285-316.
[7] B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math. 304 (1978), 332-365.
[8] R. W. Bruggeman, Dedekind sums and Fourier coefficients of modular forms, J. Number Theory 36 (1990), 289-321.
[9] Y. Chuman, Generators and relations of Γ₀(N), J. Math. Kyoto Univ. 13 (1973), 381-390.
[10] H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, New York 1980.
[11] R. Dedekind, Erläuterungen zu zwei Fragmenten von Riemann, in: Gesammelte Mathematische Werke, Friedr. Vieweg & Sohn, Braunschweig 1930, 159-172.
[12] H. Frasch, Die Erzeugenden der Hauptkongruenzgruppen für Primzahlstufen, Math. Ann. 108 (1933), 229-252.
[13] L. A. Goldberg, Transformations of Theta-functions and Analogues of Dedekind Sums, Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 1981.
[14] E. Grosswald, On the structure of some subgroups of the modular group, Amer. J. Math. 72 (1950), 809-834.
[15] E. Grosswald, On the parabolic generators of the principal congruence subgroups of the modular group, Amer. J. Math. 74 (1952), 435-443.
[16] E. Grosswald, An orthonormal system and its Lebesgue constants, in: Analytic Number Theory, M. I. Knopp (ed.), Lecture Notes in Math. 899, Springer, Berlin 1981, 2-9.
[17] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, New York 1974.
[18] G. H. Hardy, Collected Papers, Vol. 1, Clarendon Press, Oxford 1966.
[19] G. H. Hardy and J. E. Littlewood, Some problems of Diophantine approximation. I. The fractional part of $n^{k}θ$, Acta Math. 37 (1914), 155-191.
[20] G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio Numerorum'; III: On the expression of a number as a sum of primes, Acta Math. 44 (1922), 1-70.
[21] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. (2) 17 (1918), 75-115.
[22] E. Hecke, Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. Zweite Mitteilung, Math. Z. 6 (1920), 11-51.
[23] E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktenwicklung. I, Math. Ann. 114 (1937), 1-28.
[24] E. Hecke, Mathematische Werke, Vandenhoeck & Ruprecht, Göttingen 1970.
[25] D. R. Hickerson, Continued fractions and density results for Dedekind sums, J. Reine Angew. Math. 290 (1977), 113-116.
[26] F. John, Identitäten zwischen dem Integral einer willkürlichen Funktion und unendlichen Reihen, Math. Ann. 110 (1935), 718-721.
[27] M. Knopp, Modular Functions in Analytic Number Theory, Markham, Chicago 1970.
[28] M. Knopp, Rademacher on J(τ), Poincaré series of nonpositive weights and the Eichler cohomology, Notices Amer. Math. Soc. 37 (1990), 385-393.
[29] O. Körner, Übertragung des Goldbach-Vinogradovschen Satzes auf reell-quadratische Zahlkörper, Math. Ann. 141 (1960), 343-366.
[30] O. Körner, Erweiterter Goldbach-Vinogradovscher Satz in beliebigen algebraischen Zahlkörpern, Math. Ann. 143 (1961), 344-378.
[31] O. Körner, Zur additiven Primzahltheorie algebraischer Zahlkörper, Math. Ann. 144 (1961), 97-109.
[32] R. S. Kulkarni, An arithmetic-geometric method in the study of the subgroups of the modular group, Amer. J. Math. 113 (1991), 1053-1133.
[33] D. H. Lehmer, The Hardy-Ramanujan series for the partition function, J. London Math. Soc. 12 (1937), 171-176.
[34] D. H. Lehmer, On the series for the partition function, Trans. Amer. Math. Soc. 43 (1938), 271-295.
[35] J. Lehner, Ramanujan identities involving the partition function for the moduli $11^a$, Amer. J. Math. 65 (1943), 492-520.
[36] J. Lehner, Proof of Ramanujan's partition congruence for the modulus 11³, Proc. Amer. Math. Soc. 1 (1950), 172-181.
[37] J. Lehner, The Fourier coefficients of automorphic forms belonging to a class of horocyclic groups, Michigan Math. J. 4 (1957), 265-279.
[38] J. Lehner, Partial fraction decompositions and expansions of zero, Trans. Amer. Math. Soc. 87 (1958), 130-143.
[39] J. Lehner, The Fourier coefficients of automorphic forms on horocyclic groups, II, Michigan Math. J. 6 (1959), 173-193.
[40] J. Lehner, The Fourier coefficients of automorphic forms on horocyclic groups, III, Michigan Math. 7 (1960), 65-74.
[41] L. J. Mordell, Lattice points in a tetrahedron and generalized Dedekind sums, J. Indian Math. Soc. 15 (1951), 41-46.
[42] G. Myerson, Dedekind sums and uniform distribution, J. Number Theory 28 (1988), 233-239.
[43] M. Newman, Remarks on some modular identities, Trans. Amer. Math. Soc. 73 (1952), 313-320.
[44] H. Petersson, Über die Entwicklungskoeffizienten der automorphen Formen, Acta Math. 58 (1932), 169-215.
[45] H. Petersson, Die linearen Relationen zwischen den ganzen Poincaréschen Reihen von reeller Dimension zur Modulgruppe, Abh. Math. Sem. Univ. Hamburg 12 (1938), 415-472.
[46] L. Pinzur, On a question of Rademacher concerning Dedekind sums, Proc. Amer. Math. Soc. 61 (1976), 11-15.
[47] C. Pommerenke, On Bloch functions, J. London Math. Soc. (2) 2 (1970), 689-695.
[48] J. E. Pommersheim, Lattice points in a tetrahedron and toric varieties ; Dedekind sum relations and toric varieties, submitted for publication.
[49] K. G. Ramanathan, Ramanujan and the congruence properties of partitions, Proc. Indian Acad. Sci. (Math. Sci.) 89 (1980), 133-157.
[50] S. Ramanujan, Collected Papers, Chelsea, New York 1962.
[51] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi 1988.
[52] B. Riemann, Fragmente über die Grenzfälle der elliptischen Modulfunktionen, in: Gesammelte Mathematische Werke, Dover, New York 1953, 455-465.
[53] K. H. Rosen, On the sign of some Dedekind sums, J. Number Theory 9 (1977), 209-212.
[54] K. H. Rosen, Lattice points in four-dimensional tetrahedra and a conjecture of Rademacher, J. Reine Angew. Math. 307/308 (1979), 264-275.
[55] L. A. Rubel and E. G. Straus, Special trigonometric series and the Riemann hypothesis, Math. Scand. 18 (1966), 35-44.
[56] W. Schnee, Die Funktionalgleichung der Zetafunktion und der Dirichletschen Reihen mit periodischen Koeffizienten, Math. Z. 31 (1930), 378-390.
[57] A. Selberg, Reflections around the Ramanujan centenary, in: Collected Papers, Vol. 1, Springer, Berlin 1989, 695-706.
[58] C. L. Siegel, A simple proof of η(-1/τ)=η(τ)√τ/i, Mathematika 1 (1954), 4.
[59] J. L. Walsh, A closed set of normal, orthogonal functions, Amer. J. Math. 55 (1923), 5-24.
[60] G. N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. 179 (1938), 97-128.
[61] A. Weil, Sur une formule classique, J. Math. Soc. Japan 20 (1968), 400-402.
[62] A. Whiteman, A sum connected with the series for the partition function, Pacific J. Math. 6 (1956), 159-176.
[63] H. S. Zuckerman, On the coefficients of certain modular forms belonging to subgroups of the modular group, Trans. Amer. Math. Soc. 45 (1939), 298-321.
[64] H. S. Zuckerman, On the expansions of certain modular forms of positive dimension, Amer. J. Math. 62 (1940), 127-152.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav61i3p209bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.