Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  pattern recognition
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote

Texture analysis in perfusion images of prostate cancer - A case study

100%
EN
The analysis of prostate images is one of the most complex tasks in medical images interpretation. It is sometimes very difficult to detect early prostate cancer using currently available diagnostic methods. But the examination based on perfusion computed tomography (p-CT) may avoid such problems even in particularly difficult cases. However, the lack of computational methods useful in the interpretation of perfusion prostate images makes it unreliable because the diagnosis depends mainly on the doctor's individual opinion and experience. In this paper some methods of automatic analysis of prostate perfusion tomographic images are presented and discussed. Some of the presented methods are adopted from papers of other researchers, and some are elaborated by the authors. This presentation of the method and algorithms is important, but it is not the master scope of the paper. The main purpose of this study is computational (deterministic and independent) verification of the usefulness of the p-CT technique in a specific case. It shows that it is possible to find computationally attainable properties of p-CT images which allow pointing out the cancerous lesion and can be used in computer aided medical diagnosis.
EN
A new supervised classification algorithm of a heavily distorted pattern (shape) obtained from noisy observations of nonstationary signals is proposed in the paper. Based on the Gabor transform of 1-D non-stationary signals, 2-D shapes of signals are formulated and the classification formula is developed using the pattern matching idea, which is the simplest case of a pattern recognition task. In the pattern matching problem, where a set of known patterns creates predefined classes, classification relies on assigning the examined pattern to one of the classes. Classical formulation of a Bayes decision rule requires a priori knowledge about statistical features characterising each class, which are rarely known in practice. In the proposed algorithm, the necessity of the statistical approach is avoided, especially since the probability distribution of noise is unknown. In the algorithm, the concept of discriminant functions, represented by Frobenius inner products, is used. The classification rule relies on the choice of the class corresponding to the max discriminant function. Computer simulation results are given to demonstrate the effectiveness of the new classification algorithm. It is shown that the proposed approach is able to correctly classify signals which are embedded in noise with a very low SNR ratio. One of the goals here is to develop a pattern recognition algorithm as the best possible way to automatically make decisions. All simulations have been performed in Matlab. The proposed algorithm can be applied to non-stationary frequency modulated signal classification and non-stationary signal recognition.
3
Content available remote

Bivariate hahn moments for image reconstruction

100%
EN
This paper presents a new set of bivariate discrete orthogonal moments which are based on bivariate Hahn polynomials with non-separable basis. The polynomials are scaled to ensure numerical stability. Their computational aspects are discussed in detail. The principle of parameter selection is established by analyzing several plots of polynomials with different kinds of parameters. Appropriate parameters of binary images and a grayscale image are obtained through experimental results. The performance of the proposed moments in describing images is investigated through several image reconstruction experiments, including noisy and noise-free conditions. Comparisons with existing discrete orthogonal moments are also presented. The experimental results show that the proposed moments outperform slightly separable Hahn moments for higher orders.
4
100%
EN
In this work, a modified version of the elastic bunch graph matching (EBGM) algorithm for face recognition is introduced. First, faces are detected by using a fuzzy skin detector based on the RGB color space. Then, the fiducial points for the facial graph are extracted automatically by adjusting a grid of points to the result of an edge detector. After that, the position of the nodes, their relation with their neighbors and their Gabor jets are calculated in order to obtain the feature vector defining each face. A self-organizing map (SOM) framework is shown afterwards. Thus, the calculation of the winning neuron and the recognition process are performed by using a similarity function that takes into account both the geometric and texture information of the facial graph. The set of experiments carried out for our SOM-EBGM method shows the accuracy of our proposal when compared with other state-of the-art methods.
5
Content available remote

Combined classifier based on feature space partitioning

88%
EN
This paper presents a significant modification to the AdaSS (Adaptive Splitting and Selection) algorithm, which was developed several years ago. The method is based on the simultaneous partitioning of the feature space and an assignment of a compound classifier to each of the subsets. The original version of the algorithm uses a classifier committee and a majority voting rule to arrive at a decision. The proposed modification replaces the fairly simple fusion method with a combined classifier, which makes a decision based on a weighted combination of the discriminant functions of the individual classifiers selected for the committee. The weights mentioned above are dependent not only on the classifier identifier, but also on the class number. The proposed approach is based on the results of previous works, where it was proven that such a combined classifier method could achieve significantly better results than simple voting systems. The proposed modification was evaluated through computer experiments, carried out on diverse benchmark datasets. The results are very promising in that they show that, for most of the datasets, the proposed method outperforms similar techniques based on the clustering and selection approach.
6
75%
EN
This paper presents two innovative evolutionary-neural systems based on feed-forward and recurrent neural networks used for quantitative analysis. These systems have been applied for approximation of phenol concentration. Their performance was compared against the conventional methods of artificial intelligence (artificial neural networks, fuzzy logic and genetic algorithms). The proposed systems are a combination of data preprocessing methods, genetic algorithms and the Levenberg-Marquardt (LM) algorithm used for learning feed forward and recurrent neural networks. The initial weights and biases of neural networks chosen by the use of a genetic algorithm are then tuned with an LM algorithm. The evaluation is made on the basis of accuracy and complexity criteria. The main advantage of proposed systems is the elimination of random selection of the network weights and biases, resulting in increased efficiency of the systems.
7
Content available remote

Directional representation of data in Linear Discriminant Analysis

75%
EN
Sometimes feature representations of measured individuals are better described by spherical coordinates than Cartesian ones. The author proposes to introduce a preprocessing step in LDA based on the arctangent transformation of spherical coordinates. This nonlinear transformation does not change the dimension of the data, but in combination with LDA it leads to a dimension reduction if the raw data are not linearly separated. The method is presented using various examples of real and artificial data.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.