Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 23

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last

Wyniki wyszukiwania

Wyszukiwano:
w słowach kluczowych:  miara Lebesgue'a
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
1
Content available remote

Sur une généralisation de la notion de la continuité approximative

100%
FR
Définition: Nous dirons qu'une fonction f(x) (mesurable ou non) jouit de la propriété P en un point x_0 si, quel que soit le nombre positif ϵ, l'ensemble E(x_0,ϵ) des points x donnant lieu à l'inégalité |f(x)-f(x_0)| < ϵ a x_0 pour point de densité extérieure. Le but de cette note est de demontrer: Théorème: Toute fonction f(x) (mesurable ou non) jouit presque pratout de la propriété P.
FR
Le but de cette note est de démontrer: Théorème: Les fonctions dérivées de Dini d'une fonction f(x) finie et mesurable (L) dans un intervalle (a,b) sont mesurable dans cet intégrale.
3
Content available remote

Un lemme métrique

100%
FR
Le but de cette note est de démontrer le lemme: Lemme: Soit E un ensemble linéaire borné et soit ℱ une famille d'intervalles, telle que tout point x de E est une extrémité gauche d'un au moins intervalle δ(x) de famille ℱ. Thèse: ϵ étant un nombre positif donné quelconque, il existe toujours un nombre fini N=N(ϵ) d'intervalles δ(x_1), δ(x_2),...,δ(x_N) de la famille ℱ, n'empiétant pas les uns sur les autres et tels que la mesure extérieure (lebesguienne) de l'ensemble de ces points de E qui n'appartiennent à aucun d'intervalles δ(x_1), δ(x_2),...,δ(x_N) est < ϵ.
4
Content available remote

Sur un problème concernant les ensembles mesurables superficiellement

100%
FR
Le but de cette note est de démontrer le théorème suivant: Il existe un ensemble plan qui est de mesure nulle sur toute droite, mais qui n'est pas mesurable superficiellement.
FR
Le but de cette note est de démontrer que la réponse au problème (posée par Stanisław Ruziewicz) suivant: L'existence (pour une function bornée f(x,y), définie dans le carré 0 ≤ x ≤ 1, 0 ≤ y ≤ 1) des intégrales au sens de Lebesgue: ∫_0^1f(x,y)dx pour 0 ≤ y ≤ 1 ∫_0^1f(x,y)dy pour 0 ≤ x ≤ 1 entraîne-t-elle toujours l'existence de l'intégrale (au sens de Lebesgue) ∫_0^1 dx∫_0^1f(x,y)dy ? est négative, si l'on admet l'hypothèse du continu.
6
Content available remote

Sugli insiemi non misurabili L

100%
IT
Il scopo di questo studio e di esporrare alcuni teoremi riguardanti degli insiemi non misurabili nel senso di Lebesgue, e di aprendere cosi la via per una trattazione generale.
7
Content available remote

Sur le théorème de M. Vitali

100%
FR
Théorème: Soit E un ensemble plan quelconque mais borné et contenu dans un ensemble ouvert et borné Ω. Supposons qu'à tout point P de E correspond une suite infinie {W_i(P)} (i=1,2,...) des ensembles fermés W_i(P) contenus dans Ω et remplissant les hypothèses suivantes: 1. W_i(P) est situe dans un cercle K_i(P) dont P est le centre, 2. lim_(i → ∞) |K_i(P)| = 0 (La notation |X| signifie la mesure lebesguienne de X, si X est mesurable (L)) 3. il existe un nombre positif α tel que l'inégalité |W_i(P)|/|K_i(P)| > α a lieu pour i naturel et pour tout P de E; alors il existe une suite finie ou infinie {P_n} des points appartenant à E et une suite des nombres naturelles {a_n}, telles que les ensembles W_{a_n}(P_n) aient les propriétés 1. que leur somme ∑_{n=1}^{∞}Z_n recouvre presque tout l'ensemble E; 2. Z_p Z_q = 0 pour p ≠ q.
8
Content available remote

Sur les distances des points dans les ensembles de mesure positive

100%
FR
Le but de cette note est de démontrer le théorème suivant: Tout ensemble linéaire de mesure positive contient deux points distincts a et b de distance rationnelle et de donner quelques généralisations faciles du théorème.
9
Content available remote

Sur une propriété des fonctions de M. Hamel

88%
FR
Le but de cette note est de démontrer le théorème suivant suggeré par Monsieur Nikodym: Théorème: Une fonction discontinue d'une variable réelle f(x) satisfaisant à l'équation fonctionnelle f(x+y) = f(x) + f(y), ne peut être majorée par aucune fonction mesurable.
10
Content available remote

Sur un corps non dénombrable de nombres réels

88%
FR
Le but de cette note est de définir un corps non dénombrable de nombres réels n'en contenant pas la totalité.
11
Content available remote

Sur la question de la mesurabilité de la base de M. Hamel

88%
FR
Le but de cette note est de démontrer que la base de Hamel peut être mesurable au sens de Lebesgue.
12
Content available remote

Sur les fonctions dérivées des fonctions mesurables

88%
FR
Le but de cette note est de démontrer que les fonctions derivées de Dini d'une fonction f(x) mesurable (L) sont mesurable (L).
13
Content available remote

Sur les fonctions d'ensemble additives et continues

88%
FR
Soit E_0 un ensemble borné donné de points dans un espace à m dimensions, soit E un ensemble variable, contenu dans E_0 et mesurable (L). On appelle une fonction d'ensemble f(E) (dont la valeur f(E) est un nombre réel (fini) déterminé pour les sous - ensembles de E_0) additive (simplement) dans E_0, si sa valeur sur un ensemble somme de deux sous-ensembles mesurables de E_0 sans point commun est la somme de ses valeurs sur chacun de ces sous-ensembles. La fonction additive f(E) est dite continue dans E_0 si elle tend vers zéro avec le diamètre de E ∈ E_0 , elle est dite absolument continue, si elle tend vers zéro avec la mesure de E ∈ E_0. Le but de cette note est de démontrer: Théorème: Une fonction additive et continue f(E) qui prend pour deux sous - ensembles E_1 et E_2 d'un ensemble borné E_0 des valeurs f(E_1) et f(E_2), prend, pour un sous-ensemble convenable (mesurable) de E_0 toute valeur intermédiaire entre f(E_1) et f(E_2).
14
Content available remote

Démonstration élémentaire du théorème sur la densité des ensembles

88%
FR
Le but de cette note est de démontrer: Théorème: Presque tous les points d'un ensemble E quelconque situé dans l'espace à q dimensions, sont points de densité extérieure de E.
15
Content available remote

Les probabilités dénombrables et leur rapport à la théorie de la mesure

88%
FR
Le but de cette note est d'établir un système des postulats pour les probabilités dénombrables qui permettra une fois pour toutes de passer d'une interprétation à l'autre dans les recherches de ce genre.
16
Content available remote

Sur le problème de la mesure

75%
FR
Dans ce travail l'auteur s'occupe du problème de la mesure et des trois problèmes connexes suivants: Problème: Dans son livre "Leçons sur l'intégration" (Paris 1905) Monsieur Lebesgue énonce les propriétés de son intégrale: 1. Quels que soient a, b, h, on a ∫_{a}^{b}f(x)dx = ∫_{a+h}^{b+h}f(x-h)dx 2. Quels que soient a, b, c, on a ∫_{a}^{b}f(x)dx + ∫_{b}^{c}f(x)dx +∫_{c}^{a}f(x)dx = 0 3. ∫_{a}^{b}[f(x)+φ(x)]dx = ∫_{a}^{b}f(x)dx +∫_{a}^{b}φ(x)dx 4. Si l'on a f ≤ 0 et b>a, on a aussi ∫_{a}^{b}f(x)dx ≥ 0. 5. On a ∫_{0}^{1}adx = 1. 6. Si f_{n}(x) tend en croissant vers f(x), l'intégrale de f_{n}(x) tend vers celle de f(x). En même temps Monsieur Lebesgue pose le problème si la propriété (6) est indépendante de cinq autres. Problème: Dans son livre "Grundzüge der Mengenlehre" (Leipzig 1914) Monsieur Hausdorff s'occupe du problème suivant: Peut-on attacher à chaque ensemble borné E d'un espace à m dimensions un nombre m(E) satisfaisant aux conditions suivantes: 1. m(E) ≥ 0, 2. m(E_0) =1 pour un ensemble E_0 de l'espace considéré, 3. m(E_1+E_2) = m(E_1) + m(E_2), si E_1E_2=0, 4. m(E_1) = m(E_2) si les ensembles E_1 et E_2 sont superposables. Il prouve que ce problème est impossible pour l'espace à trois ou plus dimensions. Dans cette note on s'occupe du problème analogue pour l'espace à une ou deux dimensions. Problème: Monsieur Ruziewicz a posé le problème suivant: Existe-il une opérion f(X) satisfaisant aux conditions suivantes: 1. f(X) est définie pour tout ensemble mesurable (L) d'un espace à n dimensions, 2. f(X) ≥ 0, 3. f(X_0) = 1 pour un certain ensemble X_0 tel que m(X_0) = 1, 4. f(X+Y) = f(X) + f(Y) pour X · Y=0, 5. f(X) = f(Y) si X ≅ Y, 6. f(X_1) ≠ m(X_1) pour un certain ensemble X_1 mesurable (L).
FR
Le but de cette note est de prouver une propriété fort simple de la fonction f(x) satisfaisant à l'équation fonctionnelle: f(x+y) = f(x) + f(y), propriété qui nous permettra de décomposer la droite en m ensembles superposables, partout denses, disjoints, non mesurables (L), m étant un nombre cardinal quelconque, satisfaisant aux inégalités: א_0 ≤ m ≤ 2^{א_0}.
18
75%
FR
Le but de cette notes est rectification et addition à la note "Sur l'unicité du développement trigonométrique" publiée dans Fundamenta Mathematica, vol. III, p.287.
19
Content available remote

Sur une classe de fonctions d'ensemble

75%
FR
Dan ce mémoire l'auteur s'occupe des fonctions d'ensembles définies pour les ensembles formant un corps K_0. Le corps K_0 est le produit de toutes les classes K de sous-ensembes du carre aux sommets (0,0), (0,1), (1,0), (1,1) (carre fondamental) satisfaisant aux conditions suivantes: 1. Tout carre ferme, contenu dans le carre fondamental, appartient à K; 2. Si E_1 et E_2 appartient à K, et si E_1E_2=0, alors E_1+E_2 appartient à K; 3. Si E_1 et E_2 appartient à K et E_2 ⊂ E_1, alors E_1-E_2 appartient à K.
20
Content available remote

Sur l'unicité du développement trigonométrique

75%
FR
Le but de cette note est de démontrer le suivant théorème: Si la série trigonométrique a_0/2 + ∑_{n=1}^{n = ∞}(a_n cos2πnx + b_n sin2πnx ), dont les coefficients a_n, b_n tendent vers zéro quand n → ∞, converge vers zéro partout, sauf peut-être aux points d'un ensemble fermé Z, ou, plus généralement, si partout, sauf peut-être aux points de Z, on a a_0/2 + lim_{r → 1} ∑_{n=1}^{n = ∞}(a_n cos2πnx + b_n sin2π nx )r^n =0, alors, pourvu que l'ensemble Z soit du type Hardy-Littlevood-Steinhaus, on aura a_0=0, a_n=b_n=0 (n=1,2,...).
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.